1 Power Dissipation in CMOS Two Components contribute to the power dissipation: »Static Power Dissipation –Leakage current –Sub-threshold current »Dynamic.

Slides:



Advertisements
Similar presentations
ECE555 Lecture 5 Nam Sung Kim University of Wisconsin – Madison
Advertisements

Copyright © 2004 by Miguel A. Marin Revised CMOS CIRCUIT TECHNOLOGY NMOS & PMOS TRANSISTOR SWITCH NMOS & PMOS AS LOGIC CIRCUITS NMOS & PMOS.
Transmission Gate Based Circuits
Elettronica T A.A Digital Integrated Circuits © Prentice Hall 2003 Inverter CMOS INVERTER.
© Digital Integrated Circuits 2nd Inverter EE4271 VLSI Design The Inverter Dr. Shiyan Hu Office: EERC 518 Adapted and modified from Digital.
Digital Integrated Circuits© Prentice Hall 1995 Devices Jan M. Rabaey The Devices.
Copyright Agrawal & Srivaths, 2007 Low-Power Design and Test, Lecture 2 1 Low-Power Design and Test Dynamic and Static Power in CMOS Vishwani D. Agrawal.
Introduction to CMOS VLSI Design Lecture 18: Design for Low Power David Harris Harvey Mudd College Spring 2004.
Copyright Agrawal, 2007 ELEC5270/6270 Spring 09, Lecture 4 1 ELEC / Spring 2009 Low-Power Design of Electronic Circuits Power Dissipation.
Designing Combinational Logic Circuits: Part2 Alternative Logic Forms:
EE42/100, Spring 2006Week 14a, Prof. White1 Week 14a Propagation delay of logic gates CMOS (complementary MOS) logic gates Pull-down and pull-up The basic.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 14: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
8/22/06 and 8/24/06 ELEC / Lecture 2 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5270/6270) Power.
11/5/2004EE 42 fall 2004 lecture 281 Lecture #28 PMOS LAST TIME: NMOS Electrical Model – NMOS physical structure: W and L and d ox, TODAY: PMOS –Physical.
CMOS Digital Integrated Circuits 1 Lec 7 CMOS Inverters: Dynamic Analysis and Design.
© Digital Integrated Circuits 2nd Inverter CMOS Inverter: Digital Workhorse  Best Figures of Merit in CMOS Family  Noise Immunity  Performance  Power/Buffer.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 13: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
8/23-25/05ELEC / Lecture 21 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Lecture 5 – Power Prof. Luke Theogarajan
Lecture 7: Power.
Lecture 21, Slide 1EECS40, Fall 2004Prof. White Lecture #21 OUTLINE –Sequential logic circuits –Fan-out –Propagation delay –CMOS power consumption Reading:
© Digital Integrated Circuits 2nd Devices VLSI Devices  Intuitive understanding of device operation  Fundamental analytic models  Manual Models  Spice.
Power, Energy and Delay Static CMOS is an attractive design style because of its good noise margins, ideal voltage transfer characteristics, full logic.
The CMOS Inverter Slides adapted from:
Digital Integrated Circuits© Prentice Hall 1995 Inverter THE INVERTERS.
MOS Inverter: Static Characteristics
Free Powerpoint Templates Page 1 Free Powerpoint Templates Low Power VLSI Design Dr Elwin Chandra Monie RMK Engineering College.
EE466: VLSI Design Power Dissipation. Outline Motivation to estimate power dissipation Sources of power dissipation Dynamic power dissipation Static power.
1 Delay Estimation Most digital designs have multiple data paths some of which are not critical. The critical path is defined as the path the offers the.
Gheorghe M. Ştefan
1 The Physical Structure (NMOS) Field Oxide SiO2 Gate oxide Field Oxide n+ Al SiO2 Polysilicon Gate channel L P Substrate D S L W (D) (S) Metal n+ (G)
ENGG 6090 Topic Review1 How to reduce the power dissipation? Switching Activity Switched Capacitance Voltage Scaling.
Low-Power CMOS Logic Circuit Topic Review 1 Part I: Overview (Shaw) Part II: (Vincent) Low-Power Design Through Voltage Scaling Estimation and Optimization.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 16, 2013 Energy and Power.
EE415 VLSI Design DYNAMIC LOGIC [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
1. Department of Electronics Engineering Sahand University of Technology NMOS inverter with an n-channel enhancement-mode mosfet with the gate connected.
THE INVERTERS. DIGITAL GATES Fundamental Parameters l Functionality l Reliability, Robustness l Area l Performance »Speed (delay) »Power Consumption »Energy.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 15, 2014 Energy and Power.
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
Chapter 07 Electronic Analysis of CMOS Logic Gates
Ratioed Circuits Ratioed circuits use weak pull-up and stronger pull-down networks. The input capacitance is reduced and hence logical effort. Correct.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 18: October 13, 2014 Energy and Power.
1 The Physical Structure (NMOS) Field Oxide SiO2 Gate oxide Field Oxide n+ Al SiO2 Polysilicon Gate channel L P Substrate D S L W (D) (S) Metal n+ (G)
HW (Also, use google scholar to find one or two well cited papers on symmetric models of MOSFET, and quickly study them.)
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 18: October 14, 2013 Energy and Power.
Inverter Chapter 5 The Inverter April 10, Inverter Objective of This Chapter  Use Inverter to know basic CMOS Circuits Operations  Watch for performance.
© Digital Integrated Circuits 2nd Inverter EE5900 Advanced Algorithms for Robust VLSI CAD The Inverter Dr. Shiyan Hu Office: EERC 731 Adapted.
EE141 © Digital Integrated Circuits 2nd Inverter 1 Digital Integrated Circuits A Design Perspective The Inverter Jan M. Rabaey Anantha Chandrakasan Borivoje.
Basics of Energy & Power Dissipation
Bi-CMOS Prakash B.
Solid-State Devices & Circuits
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 6.1 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng.
Dynamic Logic.
1 Dynamic CMOS Chapter 9 of Textbook. 2 Dynamic CMOS  In static circuits at every point in time (except when switching) the output is connected to either.
EE141 Combinational Circuits 1 Chapter 6 (I) Designing Combinational Logic Circuits Dynamic CMOS LogicDynamic CMOS Logic V1.0 5/4/2003.
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University
Copyright Agrawal 2007ELEC / Spr 2015 Lecture 2 Jan ELEC / Spring 2015 Low-Power Design of Electronic Circuits Power.
Damu, 2008EGE535 Fall 08, Lecture 51 EGE535 Low Power VLSI Design Lecture #5 & 6 CMOS Inverter.
Power Consumption in CMOS
Pass-Transistor Logic
EE141 Chapter 5 The Inverter April 10, 2003.
Reading: Hambley Ch. 7; Rabaey et al. Sec. 5.2
Notes on Diodes 1. Diode saturation current:  
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
The Physical Structure (NMOS)
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Power and Heat Power Power dissipation in CMOS logic arises from the following sources: Dynamic power due to switching current from charging and discharging.
Propagation Delay.
Presentation transcript:

1 Power Dissipation in CMOS Two Components contribute to the power dissipation: »Static Power Dissipation –Leakage current –Sub-threshold current »Dynamic Power Dissipation –Short circuit power dissipation –Charging and discharging power dissipation

2 Static Power Dissipation G S D D G S Vo VDD GND B B MP MN Leakage Current: P-N junction reverse biased current: i o = i s (e qV/kT -1) Typical value 0.1nA to temp. Total Power dissipation: P sl =  i 0.V DD Sub-threshold Current Relatively high in low threshold devices Vin

3 Analysis of CMOS circuit power dissipation n The power dissipation in a CMOS logic gate can be n expressed as n P = P static + P dynamic n = (VDD · I leakage ) + (p · f · E dynamic ) n Where p is the switching probability or activity factor n at the output node (i.e. the average number of output n switching events per clock cycle). n The dynamic energy consumed per output switching event is defined as E dynamic =

4 Analysis of CMOS circuit power dissipation The first term —— the energy dissipation due to the Charging/discharging of the effective load capacitance C L. The second term —— the energy dissipation due to the input-to- output coupling capacitance. A rising input results in a V DD  - V DD transition of the voltage across C M and so doubles the charge of C M. C L = C load + C dbp +C dbn C M = C gdn + C gdp

5 n distributed, n voltage-dependent, and n nonlinear. n So their exact modeling is quite complex. The MOSFET parasitic capacitances Even E SC can be modeled, it is also difficult to calculate the E dynamic. On the other hand, if the short-circuit current i SC can be Modeled, the power-supply current i DD may be modeled with the same method. So there is a possibility to directly model i DD instead of i SC.

6 Schematic of the Inverter

7

8 The short-circuit energy dissipation E SC is due to the rail- to-rail current when both the PMOS and NMOS devices are simultaneously on. E SC = E SC_C + E SC_n Where and Analysis of short-circuit current

9 Charging and discharging currents n Discharging Inverter Charging Inverter

10 Factors that affect the short-circuit current For a long-channel device, assuming that the inverter is symmetrical (  n =  p =  and V Tn = -V Tp = V T ) and with zero load capacitance, and input signal has equal rise and fall times (  r =  f =  ), the average short-circuit current [Veendrick, 1994] is From the above equation, some fundamental factors that affect short-circuit current are: , V DD, V T,  and T.

11 Parameters affecting short cct current For a short-channel device,  and VT are no longer constants, but affected by a large number of parameters (i.e. circuit conditions, hspice parameters and process parameters). C L also affects short-circuit current. I mean is a function of the following parameters (t ox is process- dependent): C L, , T (or  /T), V DD, W n,p, L n,p (or W n,p / L n,p ), t ox, … The above argument is validated by the means of simulation in the case of discharging inverter,

12 The effect of C L on Short CCt Current

13 Effect of t r on short cct Current

14 Effect of Wp on Short cct Current

15 Effect of timestep setting on simulation results

16 Thank you !