Carbohydrates - Fuel and Building Material Pgs 60-65 1.Sugars, the smallest carbohydrates, serve as fuel and carbon sources 2.Polysaccharides, the polymers.

Slides:



Advertisements
Similar presentations
The Structure and Function of Macromolecules: Carbohydrates, Lipids & Phospholipids.
Advertisements

Carbohydrates. Carbohydrate Linguistics ‘Carbo’ for carbon, ‘hydrate’ for water. Empirical Formula is (CH 2 O) n where n is the number of carbon atoms.
Objectives: 1. Identify examples 2. Identify formulas 3. How are they put together or broken down? 4. Basic facts.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section B: Carbohydrates.
Polysaccharides are polymers of hundreds to thousands of monosaccharides joined by glycosidic linkages. One function of polysaccharides is as an energy.
Biological Molecules Carbohydrates. III. Carbohydrates include sugars, starches, and cellulose A. carbohydrates contain only the elements carbon, hydrogen,
The Structure and Function of Large Biological Molecules
CHAPTER 2 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Structure & Function of Large Biological Molecules (Macromolecules)
Smaller organic molecules join together to form larger molecules macromolecules 4 major classes of macromolecules: carbohydrates lipids proteins nucleic.
Chapter 5- The Structure and Function of Macromolecules Carbohydrates
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
Carbohydrates & Lipids
Chapter 5 Large Molecules are the Hallmark of Life.
Review Questions 1. How are polymers formed (what type of reaction)? 2. What occurs in this reaction? 3. How are polymers broken down (what type of reaction)?
Objective 6: TSWBAT name, describe and recognize typical bonding linkages and the four groups of macromolecules typically formed by these linkages.
Chemistry of Cells.
Carbohydrate – (hydrated carbon) Carbohydrates have empirical formula C x (H 2 O) y. Most abundant carbohydrate is glucose, C 6 H 12 O 6. Two types of.
AP Biology Macromolecules. AP Biology Macromolecules  Smaller organic molecules join together to form larger molecules Macromolecules  4 major classes.
Carbohydrates General molecular formula: C n H 2n O n 1 : 2 : 1 When we say macromolecules what does that mean? It means huge molecular mass (hundreds.
Chapter 5: Macromolecules Macromolecules A large molecule in a living organism –Proteins, Carbohydrates, Nucleic Acids Polymer- long molecules built.
AP Biology Chapter 5. Macromolecules. AP Biology Macromolecules  Smaller organic molecules join together to form larger molecules.
Aim: What is the structure and function of carbohydrates? Homework Reminder:. Do Now: In Regents Chemistry, you learned about aldehydes and ketones. What.
AP Biology 2015 OH H H HO CH 2 OH H H H OH O Carbohydrates energy molecules.
The Chemical Building Blocks
Carbon Compounds The structure of a biomolecule will help determine its properties and functions Organic compounds contain carbon atoms that are covalently.
Review Question 1 How many molecules of water are needed to completely hydrolyze a polymer that is 10 monomers long? 9.
Carbohydrates The most common building material on Earth Made of Carbon Hydrogen and Oxygen (Most have the ratio 1:2:1 for C:H:O) Used as energy source,
Macromolecules 4 major classes of macromolecules: carbohydrates lipids proteins nucleic acids.
The Structure and Function of Macromolecules Chapter carbohydrates.
Chapter 3 Carbohydrates and Lipids. You Must Know The cellular functions of carbohydrates and lipids. How the sequence and subcomponents of carbohydrates.
The test has been postponed until Wednesday.
Macromolecules Chapter 5 All are polymers Monomer – subunit of polymer Macromolecule – large organic polymer Those found in living systems: Carbohydrates.
Carbohydrates Carbohydrate – (hydrated carbon)
Overview: The Molecules of Life 4 Classes of organic molecules make up living things: 1.Carbohydrates 2.Lipids 3.Proteins 4.Nucleic acids.
Carbohydrates.
Biological Macromolecules Large molecules that perform many important biological functions  Carbohydrates  Lipids  Proteins  Nucleic Acids Many are.
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings Section B: Carbohydrates.
Carbohydrates Carbohydrates serve as fuel and building material
Glucose Molecule. Macromolecules Carbohydrates, proteins, and nucleic acids are polymers Polymers – long molecules made from building blocks linked by.
Carbohydrates Carbohydrates are a family of organic molecules made up of carbon, hydrogen, and oxygen atoms. Some are small, simple molecules, while others.
Chapter Pg Objective: I can identify and classify several different types of carbohydrates based on their molecular structures.
AP Biology Carbohydrates AP Biology OH H H HO CH 2 OH H H H OH O Carbohydrates energy molecules.
Chapter 5 The Structure and Function of Macromolecules Intro & Carbohydrates.
AP Biology Chapter 5. Macromolecules. AP Biology Macromolecules  Smaller organic molecules join together to form larger molecules.
Chapter 5 The Structure and Function of Large Biological Molecules Carbohydrates.
Carbohydrates.
Carbohydrates, Proteins and Lipids
Large Molecules are the Hallmark of Life
Organic Macromolecules: Carbohydrates
AP Biology Discussion Notes
Unit 5:the Structure and Function of Macromolecules
Chapter 5.
Carbon and the Molecular Diversity of Life
Carbohydrates and Lipids
Carbohydrates are composed of C, H, O
The Structure and Function of Large Biological Molecules
For Premedical Students
General Animal Biology
Review Question 1 How many molecules of water are needed to completely hydrolyze a polymer that is 4 monomers long? 3.
Part II: Carbohydrates
For Premedical Students
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
CHAPTER 5 THE STRUCTURE AND FUNCTION OF MACROMOLECULES
For Premedical Students
General Animal Biology
Annie Stetz & Peter Collins
For Premedical Students
THE STRUCTURE AND FUNCTION OF MACROMOLECULES
The Structure and Function of Macromolecules
Presentation transcript:

Carbohydrates - Fuel and Building Material Pgs Sugars, the smallest carbohydrates, serve as fuel and carbon sources 2.Polysaccharides, the polymers of sugars, have storage and structural roles

1.Sugars, the smallest carbohydrates serve as a source of fuel and carbon sources Monosaccharides generally have molecular formulas containing C,H and O in a 1:2:1 ratio. –For example, glucose has the formula C 6 H 12 O 6. –Most names for sugars end in -ose. Monosaccharides have a carbonyl group and multiple hydroxyl groups. –If the carbonyl group is at the end, the sugar is an aldose (aldehyde sugar), if not, the sugars is a ketose (ketone sugar). Remember these functional groups from chapter 4?

Classification of Monosaccharides Monosaccharides are also classified by the number of carbons in the backbone. –Six carbon sugars (including glucose) are hexoses. –Five carbon backbones are pentoses –Three carbon sugars are trioses

Monosaccharide Isomers Structural Isomers (What does this mean?)  Glucose, an aldose, and fructose, a ketose, are structural isomers Monosaccharides may also exist as enantiomers (What does this mean?)  glucose and galactose, both six-carbon aldoses, differ in the spatial arrangement around asymmetrical carbons.

Figure 5.3, pg 60

Monosaccharides, particularly glucose, are a major fuel for cellular work. They also function as the raw material for the synthesis of other monomers, including those of amino acids and fatty acids. While often drawn as a linear skeleton, in aqueous solutions monosaccharides form rings. Figure 5.4 pg 61

Figure 5.5 pg 61 Two monosaccharides can join with a glycosidic linkage to form a dissaccharide via dehydration. –Maltose, malt sugar, is formed by joining two glucose molecules. –Sucrose, table sugar, is formed by joining glucose and fructose and is the major transport form of sugars in plants.

Figure 5.5

2. Polysaccharides, the polymers of sugars, have storage and structural roles Polysaccharides are polymers of hundreds to thousands of monosaccharides joined by glycosidic linkages. (What is a polymer?) One function of polysaccharides is as an energy storage macromolecule that is hydrolyzed as needed. Other polysaccharides serve as building materials for the cell or whole organism.

Starch is a storage polysaccharide composed entirely of glucose monomers. –Most monomers are joined by linkages between the #1 carbon of one glucose and the #4 carbon of the next glucose molecule (see slide 7). Referred to as 1-4 linkages. –One unbranched form of starch, amylose, forms a helix. –Branched forms, like amylopectin, are more complex. –Figure 5.6, pg 62

Biological Uses of Polysaccharides Plants store starch within plastids, including chloroplasts. Plants can store surplus glucose in starch and withdraw it when needed for energy or carbon. Animals that feed on plants, especially parts rich in starch, can also access this starch to support their own metabolism. Hey, this sounds like an objective!

Animals also store glucose in a polysaccharide called glycogen. Glycogen is highly branched, like amylopectin. Humans and other vertebrates store glycogen in the liver and muscles but only have about a one day supply. Hey, this sounds like an objective!

While polysaccharides can be built from a variety of monosaccharides, glucose is the primary monomer used in polysaccharides. One key difference among polysaccharides develops from 2 possible ring structure of glucose. –These two ring forms differ in whether the hydroxyl group attached to the number 1 carbon is fixed above (beta glucose) or below (alpha glucose) the ring plane. –Figure 5.7, pg 63

Starch is a storage polysaccharide of alpha glucose monomers

Structural polysaccharides form strong building materials. Cellulose is a major component of the tough wall of plant cells. –Cellulose is also a polymer of glucose monomers, but using beta rings.

While polymers built with alpha glucose form helical structures, polymers built with beta glucose form straight structures. This allows H atoms on one strand to form hydrogen bonds with OH groups on other strands. Hydrogen bonds play an important role in life? Hey, this was an objective from chapter 2! –Groups of polymers form strong strands, microfibrils, that are basic building material for plants (and humans).

Figure 5.8,pg 64

The enzymes that digest starch cannot hydrolyze the beta linkages in cellulose. –Cellulose in our food passes through the digestive tract and is eliminated in feces as “insoluble fiber”. –As it travels through the digestive tract, it abrades the intestinal walls and stimulates the secretion of mucus. Some microbes can digest cellulose to its glucose monomers through the use of cellulase enzymes. Many eukaryotic herbivores, like cows and termites, have symbiotic relationships with cellulolytic microbes, allowing them access to this rich source of energy.

Another important structural polysaccharide is chitin, used in the exoskeletons of arthropods (including insects, spiders, and crustaceans). Chitin is similar to cellulose, except that it contains a nitrogen-containing appendage on each glucose. Pure chitin is leathery, but the addition of calcium carbonate hardens the chitin. Chitin also forms the structural support for the cell walls of many fungi.

Did I mention the Objectives? 2.Describe the distinguishing characteristics of carbohydrates and explain their classification 3.Describe the important biological functions of polysaccharides