Core Concepts in Genetics Mendelian Inheritance The Double Helix.

Slides:



Advertisements
Similar presentations
What are we going to talk about today?
Advertisements

Introduction to Genetics
Basic Mendelian Principles
Biology Today Third Edition Chapter 2 Genes, Chromosomes, and DNA Copyright © 2004 by Garland Science Eli Minkoff Pam Baker.
Mendelian Genetics.  Also referred to as “transmission genetics”  Principles that describe how traits are passed from parents to offspring. are responsible.
11.1 The Work of Gregor Mendel
Recall: several hypotheses about inheritance
Mendelism: The Basic Principles of Inheritance Asmarinah.
Dr. Madhumita Bhattacharjee Assiatant Professor Botany Deptt. P.G.G.C.G. -11,Chandigarh.
The Work of Gregor Mendel
11-1 The Work of Gregor Mendel
Biology Unit 8 Review: Heredity
12.1: Origins of Hereditary Science
1. Mendelian Genetics Adapted from Rashidah Iberahim’s Siti Sarah Jumali Level 3 Room 14 Ext 2123.
Mendelian Genetics. Gregor Mendel (July 20, 1822 – January 6, 1884) Augustinian priest and scientist, and is often called the father of genetics for his.
Mendelian Patterns of Inheritance
Mendel and the Gene Idea. What genetic principles account for the passing of traits from parents to offspring?  The “blending” hypothesis is the idea.
Chapter 10 Discovery of genes, alleles and Deoxyribonucleic Acid.
Chapter 11: DNA and Genes (Part 1). 1. Although the environment influences how an organism develops, the genetic information that is held in the molecules.
Chapter 11 DNA and Genes Section 1 DNA: The Molecule of Heredity.
1 Vocabulary Review GENETICS. 2 Study of how characteristics are transmitted from parent to offspring GENETICS.
Gregor Mendel Humans have noticed family resemblances for thousands of years. Heredity- the passing of traits from parents to offspring, was used for.
The Double Helix The Complementary Model J.D. Watson F.H. Crick.
Continuity Through Heredity. The Dual Role of Genetic Material  Heredity – the transmission of genetic information from one generation to another  The.
Pea plants have several advantages for genetics.
Genetics Insert awwwss. History of Genetics Trait: A variation of a particular character. In the early 1800s, the common thought on genetics was called.
10 Nature, structure and organisation of the genetic material.
The Work of Gregor Mendel. Think About It! What is an inheritance? –It is something we each receive from our parents – a contribution that determines.
1 Vocabulary Review GENETICS. 2 Study of how characteristics are transmitted from parent to offspring GENETICS.
 DNA – double helix DNA coils to form a chromosome You receive 1 set of chromosome from mom & one from dad Chromosomes have areas that code for a gene.
DNA. What is DNA? DNA (Deoxyribonucleic Acid)- is the information of life Achieves its control by determining the structure of proteins The complete instructions.
Warm up: Who was the father of genetics?. Fundamentals of Genetics Chapter 9 Section 1 Mendel’s Legacy Section 2 Genetic Crosses Lynn English High School~Biology~Ms.
The Work of Gregor Mendel. Genetics Heredity – transmission of traits from one generation to the next Genetics – study of heredity.
Gregor Mendel Brno, Austria One of the first people to examine the inheritance of traits across generations by: One of the first people to examine the.
Genetics.
Heredity – Chapter 4 Mendelian Genetics, Monohybrid and Dihybrid Crosses and Beyond Mendel’s Laws.
Genes and Inheritance. What is DNA? Chromosomes are made up of DNA coiled tightly around proteins called histones. Chromosomes are made up of DNA coiled.
Chapter 9 Patterns of Inheritance. MENDEL’s LAW The science of genetics has ancient roots Pangenesis, proposed around 400 B.C. by Hippocrates, was an.
 Who was Gregor Mendel (biographical information)?  What did he study?  Why did he use pea plants for his research?  What were his results?  What.
DNA Structure DNA STRUCTURE Each nucleotide is composed of (1) a Phosphate group (2) a five – carbon sugar (or Pentose), and.
2 Mendel’s experiments (2015). Genetics is a biological discipline that studies: the transmission of traits from one generation to the next gene distribution,
DNA HISTORY, STRUCTURE, & REPLICATION. WHAT IS DNA? Deoxyribose Nucleic Acid Polymer made out of sugars (deoxyribose), phosphates, and nitrogen bases.
DNA: Genetic Material. Review:  All living things must have genetic material Species must be able to pass on that genetic material to future generations.
The Study of Heredity Chapter 2.
Chapter 9 Table of Contents Section 1 Mendel’s Legacy
Section 1: Origins of Hereditary Science
Chapter 9 Table of Contents Section 1 Mendel’s Legacy
MENDEL AND THE GENE IDEA Gregor Mendel’s Discoveries
How traits are passed from parents to offspring.
Genetics Chapter 11.
Medelian Genetics.
11-1 The Work of Gregor Mendel
11-1 The Work of Gregor Mendel
General Animal Biology
Genetics.
Key Ideas Why was Gregor Mendel important for modern genetics?
DNA is composed of four nucleotides
Gregor Mendel’s Discoveries
Copyright Pearson Prentice Hall
MENDEL AND THE GENE IDEA Gregor Mendel’s Discoveries
General Animal Biology
Mendelian Genetics Mr. Davis.
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
11-1 The Work of Gregor Mendel
Chapter 9 Table of Contents Section 1 Mendel’s Legacy
Chapter Two The Study of Heredity.
MENDEL AND THE GENE IDEA Section A: Gregor Mendel’s Discoveries
Section 1: Origins of Hereditary Science
Presentation transcript:

Core Concepts in Genetics Mendelian Inheritance The Double Helix

Origin of Mendelian Genetics  "In 1859 I obtained a very fertile descendant with large, tasty seeds from a first generation hybrid. Since in the following year, its progeny retained the desirable characteristics and were uniform, the variety was cultivated in our vegetable garden, and many plants were raised every year up to 1865." (Gregor Mendel to Carl Nägeli, April 1867, from Mendel [1950])

Knowledge at the time  Hybridization was a familiar term at the time in plant work. (Kölreuter, Gärtner, Herbert, Lecoq, Wichura)  However, amongst the numerous plant hybrid researchers there was no law or methodology that described the formation of hybrids.  Hence, Mendel sought to design detailed experiments to describe these phenomena – The Law of Combination.

Mendel’s Hypotheses  Mendel perceived his experiments as a means to explaining the evolution of organic forms of life.  Mendel conceptualized that “something” had to be transmitted across the generations of an organism that allowed observable characteristics to persist.

Mendel’s Design Characteristics of Subjects 1. Possess constant differentiating characteristics (a.k.a True Breeding). 2. The hybrids of such plants must, during the flowering period, be protected from the influence of all foreign pollen, or be easily capable of such protection. 3. The hybrids and their offspring should suffer no marked disturbance in their fertility in the successive generations

Mendel’s Design After numerous trials with several members of the Leguminosae family the genus Pisum was found to possess all the afore mentioned characteristics.

The Monohybrid Cross  By examining hybrids created by a pair of true breeding plants that differed on a single characteristic Mendel sought “to deduce the law according to which they appear in successive generations”.  P1(round seed) x P2 (wrinkled) = F1 (all round seed)

Observations of the Monohybrid Cross (F1)  All the hybrid plants formed had the characteristics of a single parent.  Mendel concluded that the characteristics that persisted, unaltered after transmission were dominant, and those which became latent/obscured were recessive.  Reciprocal crosses indicated that dominant/recessive characters were not affected by the nature of the parent.

Observations of the Monohybrid Cross (F2)  Mendel then proceeded to self- pollinate all of the progeny of the F1 generation.  F1 (round) x F1 (round) = F2 ( ¾ round : ¼ wrinkled)  Progeny of the F2 generation always presented themselves with dominant and recessive characteristics.  The Monohybrid Cross The Monohybrid Cross

Observations of the Monohybrid Cross Backcross  Curious of the results Mendel conducted test crosses to determine the properties of F2 progeny.  Backcross – F2 x P2 (recessive)  Backcross results indicate that of the ¾ round seeds 1/3 produce only round seeds and 2/3 produce round and wrinkled seeds.  The Test Cross The Test Cross

Conclusions of the Monohybrid Cross (P1-F2)  For every characteristic examined the ratio of the offspring of the F1 generation is fairly constant.  F1 hybrid is a heterozygote  P1 & P2 are homozygotes.

Conclusions of the Monohybrid Cross (P1-F2)  If A represents the dominant characteristic and a the recessive, then the expression: A + 2Aa + a, describes the ratio of the parental forms to the hybrid forms in the F2 generation.  Furthermore, Hybrids display a natural tendency to revert back to their parental forms.  However, do not entirely disappear.

The Dihybrid Cross  Mendel then proceeded to combine plants that varied by two characteristics.  His F1 hybrid results were similar to that of the monohybrid crosses.  His F2 results consistently occurred in a ratio of 9:3:3:1 which consisted of the two parental forms and two hybrid forms.  The Dihybrid Cross The Dihybrid Cross

Reproductive Cells of Hybrids  To complete his theory on the inheritance of characteristics Mendel’s last set of experiments demonstrated that the egg cells of the plants were the vector for the transmission of information across generations.

Mendel’s Law of Combination  The law of combination of different characters which governs the development of the hybrids finds therefore its foundation and explanation in the principle enunciated, that the hybrids produce egg cells and pollen cells which in equal numbers represent all constant forms which result from the combinations of the characters brought together in fertilization.

Culmination of Mendel’s Work The Law of Segregation There are two elements of heredity for each trait in each individual that segregate during reproduction. Offspring receive one of the two elements from each parent. Furthermore, one of these elements may dominate the other.

Culmination of Mendel’s Work The Law of Independent Assortment Based upon the constant results of dihybrid crosses the elements for one characteristic assort independent from the elements for another characteristic.

The Double Helix The Complementary Model J.D. Watson F.H. Crick

Evidence for Fibrous Nature of DNA: Physico- chemical analysis  DNA is a long asymmetrical chain that consists of a 5- carbon sugar and phosphate backbone joined in a 3`-5` direction by phosphodisester bonds.  Each sugar has 1 of 4 bases attached to it Adenine, Guanine, Cytosine, and Thymine.

DNA Has Two Chemical Chains: X-ray Crystallography  Two alternating forms of DNA exists.  A crystalline form that occurs at 75% humidity (top) with a 2.8 A reflexion about its meridian..  A para-crystalline form that occurs at higher humidity (bottom) with 3.4 A reflexion about its meridian.  Density data indicate possibly two distinct polynucleotide chains

Hypothesized Structure  DNA is three dimensional.  DNA has two chains that are coiled around a single axis and held together by hydrogen bonds.  Both chains follow right handed helices.  The phosphates and sugar groups are on the outside and the bases on the inside.  A repeat distance of 34A with a reflexion of spacing 3.4A.

Hypothesized Structure  The two chains are held together by hydrogen bonds between the bases.  The base pairing is specific.  Adenine-Thymine Guanine-Cytosine  Each chain complements the other because of the specific base pairing.

Evidence supporting the Complementary Model X-ray pictures suggests that:  DNA’s basic structure is helical.  High concentration of atoms on the circumference of the helix.  The polynucleotide chains are not distinct from each other.

Evidence supporting the Complementary Model Titration curves of DNA suggest:  Hydrogen bond formation is characteristic of DNA structure Analytical data of the bases suggests:  The amount of A – T and C – G is very close.

Characteristics of Genetic Material 1. Must be able to self- replicate. 2. Must exert a highly specific influence on the cell.

DNA Replication: The Complementary Model  Of the two characteristics Watson & Crick proposed only a practical mechanism for replication.  Complementary base pairing is the backbone of replication.  But how does the interior of the helix allow itself to be replicated?

DNA Replication: The Complementary Model  Proposed that DNA unwinds by breaking the hydrogen bonds between the strands.  The single strands would then serve as a template to which complementary free nucleotides would attach and form 2 helices where there was originally one.  They were unaware of the numerous protein machinery (helicase, ligase, polymerases, etc.) that facilitated this process.

DNA Replication Today DNA replication