Experimental investigation of stellar 12 C+ 12 C fusion toward extremely low energies by direct and indirect methods Xiao Fang University of Notre Dame.

Slides:



Advertisements
Similar presentations
An overview of the S1105 experiment at TRIUMF. 1 Martin Jones The University of Liverpool
Advertisements

Does the 12 C+ 12 C fusion reaction ignite superbursts?
Marina Barbui Trento, Italy, April 7-11, 2014
GEANT4 Simulations of TIGRESS
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
The Role of 12 C( 12 C,n) in the Astrophysical S-Process Brian Bucher University of Notre Dame.
The 12C+12C fusion reaction: a new opportunity at ATLAS Xiaodong Tang 1 & Chenglie Jiang 2 1) Univ. of Notre Dame 2) ANL.
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
GAMMA-PARTICLE ARRAY FOR DIRECT REACTION STUDIES SIMULATIONS.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
ANASEN - Array for Nuclear Astrophysics Studies with Exotic Nuclei Silicon-strip detector array backed with 2-cm-thick CsI Gas proportional counter for.
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY Research:Stellar Burning – nuclear reactions with stable beams Explosive.
Direct measurement of 12 C + 4 He fusion cross section at Ecm=1.5MeV at KUTL H.Yamaguchi K. Sagara, K. Fujita, T. Teranishi, M. taniguchi, S.Liu, S. Matsua,
Ruđer Bošković Institute, Zagreb, Croatia CRP: Development of a Reference Database for Ion Beam Analysis Measurements of differential cross sections for.
New methods to measure the cross sections of 12 C+ 12 C fusion reaction Xiao Fang Department of Physics University of Notre Dame.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
The Inverse Kinematics Resonance Elastic Scattering Reaction of 10,11,12 Be+p Liu Yingdu( 刘应都 ) PHD candidate Advisor : Wang Hongwei, Ma Yugang
Direct Reactions with ORRUBA and GRETINA Steven D. Pain Oak Ridge National Laboratory GRETINA Workshop, ANL, February 2013.
Study of the Halo Nucleus 6 He using the 6 Li(   ) 6 He Reaction Derek Branford - Edinburgh University for the A2-Collaboration MAMI-B Mainz.
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
Searching for the Low-Energy Resonances in the 12 C( 12 C,n) 23 Mg Reaction Cross Section Relevant for S-Process Nucleosynthesis Brian Bucher University.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
Measurements of the cross sections and Ay for D(p,n) inclusive breakup reaction at 170 MeV Y. Maeda Y. Maeda, T. Saito, H. Miyasako (Univ. of Miyazaki)
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Low-lying states in 11 B Center for Nuclear Study, University of Tokyo KAWABATA Takahiro RCNP, Osaka UniversityH. Fujimura, M. Fujiwara, K. Hara, K. Hatanaka,
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
Physics Colloquium Ⅱ Shibata Laboratory OKA, Hiroki Nucleosyntheses studied with a Van de Graaff Accelerator [Contents] 1. Objective.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory E381: Search of potential resonances in the 12 C+ 12 C fusion reaction using.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
This project is funded by the NSF through grant PHY , and the Universities of JINA. The Joint Institute for Nuclear Astrophysics Henderson DUSEL.
High Resolution Spectroscopy in Nuclear Astrophysics Joachim Görres University of Notre Dame & JINA.
Search for QFS anomaly in pd - breakup reaction below E p = 19 MeV Shuntaro Kimura, K. Sagara, S. Kuroita, T. Yabe, M. Okamoto, K. Ishibashi, T. Tamura,
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory The 12 C+ 12 C fusion reaction at stellar energies Xiaodong Tang (Aggie since.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Santa Tecla, 2-9 October 2005Marita Mosconi,FZK1 Re/Os cosmochronometer: measurements of relevant Os cross sections Marita Mosconi 1, Alberto Mengoni 2,
Search for low spin states at high excitation energies in 20 Ne with the p,t reaction iThemba LABS & Stellenbosch University Energy Postgraduate Conference.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
100MeV/u 12 C+ 12 C Scattering at RCNP Weiwei Qu 、 Gaolong Zhang 、 Satoru Terashima 、 Isao Tanihata 、 Chenlei Guo 、 Xiaoyun Le 、 Hoo Jin Ong 、 Harutaka.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. Marina Barbui June, 23 rd,
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory NPA5 April 7, 2011 Upper limit on the molecular resonance strengths in the.
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Fusion excitation measurement for 20 O + 12 C at E/A = 1-2 MeV Indiana University M.J. Rudolph, Z.Q. Gosser, K. Brown ✼, D. Mercier, S. Hudan, R.T. de.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
Investigation of the proton-induced reactions on natural molybdenum.
School of Physics and Nuclear Energy Engineering
Neven Soić, Ruđer Bošković Institute, Zagreb, Croatia
Direct measurements for nuclear
Giant Monopole Resonance
Nucleosynthesis 12 C(
Tan Ahn, S. Henderson, S. Aguilar, A. Simon, W. P. Tan,
Searching for states analogous to the 12C Hoyle state in heavier nuclei using the thick target inverse kinematics technique. Marina Barbui 5/17/2018, Galveston,
1. Introduction Secondary Heavy charged particle (fragment) production
Study of the resonance states in 27P by using
Elastic alpha scattering experiments
Direct Measurement of the 8Li + d reactions of astrophysical interest
Presentation transcript:

Experimental investigation of stellar 12 C+ 12 C fusion toward extremely low energies by direct and indirect methods Xiao Fang University of Notre Dame The 11 th International Conference on Nucleus-nucleus Collisions (NN2012) San Antonio, Texas, May 31, 2012

Indirect method: 24 Mg(a,a’) inelastic Search the possible Resonances which can’t be directly measured 12 C+ 12 C Cross section within Gamow window (1 ~ 3MeV) b ~10 -7 b Cross section within Gamow window (1 ~ 3MeV) b ~10 -7 b 12 C+ 13 C 13 C+ 13 C 12 C+ 13 C 13 C+ 13 C 12 C+ 13 C 13 C+ 13 C Set upper limit for possibly existed resonances of 12 C+ 12 C SN 1987, Type II supernova SN 1994D, a type Ia supernova SN 1604 Carbon fusion project at Notre Dame Direct Measurement: 1.Efficient thick target 2. Solenoid spectrometer Verify old resonances and find new resonances

Below the barrier Above the barrier A simple pattern for complicated resonances For most energies, the 12 C+ 12 C cross sections are suppressed! Only at resonant energies, the 12 C+ 12 C cross sections matches with those of 12 C+ 13 C and 13 C+ 13 C!

Upper limit for 12 C+ 12 C fusion reaction Zickefoose (2010) ?? Spillane (2007) Cooper resonance (2009) H. Esbensen et al., Phys. Rev. C 84, (2011) M. Notani et al., Phys. Rev. C 85, (2012) 13 C+ 13 C 12 C+ 13 C 12 C+ 12 C Notre Dame Becker Esbensen

Efficient Thick target method 12 C p E’ reaction = E beam – ΔE beam 12 C( 12 C, p) 23 Na E reaction Q, E proton, θ Q=2.24 MeV - E excited ( 23 Na) E proton (MeV) Angle (deg) P 0 : protons with 23 Na at ground state P 1 : protons with 23 Na at first excited state P0P0 P1P1

 Only measure proton channel  Two YY1 silicon detectors at backward angle, covered with Aluminum foil to stop scattered 12 C and produced alpha particles  Use thick target of thickness 1mm  Detector resolution for MeV alpha particles is 40 keV(FWHM). 0.5 p  A 12 C beam from FN tandem target YY1 detector The backward angle θ Lab : 113.5° ° θ cm : 122.5° ° Solid angle calibrated by mixed alpha source 2.59% Focus on: 12 C( 12 C, p) 23 Na Efficient Thick target measurement

Scan resonances in a wide range of 3 MeV<E cm <5.3 MeV p0 p1 S* factor (MeV) Ecm (MeV) New thick target quick-scan method − Thick target − Thin target − Thick target − Thin target

Ecm (MeV) S* factor (MeV b) 60 nb 40 nb 0.4 mb Covers 4 orders of magnitude ! p0 p1 Combined S* factor from a series of thick target measurements(primary results) Background

ND-IU-ANL-CIAE collaboration: Particle-Gamma coincidence GEORGINA array at ND The New 5MV Accelerator at ND Silicon Array at Notre Dame (SAND), (chamber and detector frame are being build at IU; ASIC readout from WUSL) Tuesday, Session 14: Measurement of fusion cross sections in 12C + 12C at Low beam energies using a particle-gamma coincidence technique C.L. Jiang, ANL

Capture the channels without  -ray Solenoid Spectrometer for Nuclear Astrophysics (SSNAP) Disadvantage of Particle-gamma technique: not work for the channels without  -ray (p0 and a0) which potentially have large decay branching ratios. Recent experimental results from HELIOS Alan Wuosmaa Western Michigan University, USA Recent experimental results from HELIOS Alan Wuosmaa Western Michigan University, USA

Z(m) E(MeV) E cm =6.0 MeV, No degrader, B=3.96 T p2 p3 P4,p5 p6 p7 P8, p9 p10 α0α0 α1α1 p11 α2α2 α3α3 12 C( 12 C,p) 23 Na (Q=2.24 MeV) 12 C( 12 C,  ) 20 Ne (Q=4.62 MeV)

60 keV apart Excitation energy in 23 Na Resolution : 65 keV (FWHM) Resolution of HELIOS spectrometer: ~80 keV(FWHM) Energy resolution

p2 p3 P4,p5 p6 p7 P8, p9 p10 Z(m) E(MeV) p0 p1 E cm =5.0 MeV, Al-foil 5.8um, B=3.96 T α0α0 α1α1 xsec(p0): 1 mb Beam: ~80 pnA Duration: 6 hr 12 C( 12 C,p) 23 Na 12 C( 12 C,  ) 20 Ne

After energy loss correction Z(m) E(MeV) Z(m) E(MeV) E cm =5.0 MeV

p2 p3 P4,p5 p6 p7 P8, p9 p10 Z(m) E(MeV) p0 p1 E cm =4.0 MeV, Al-foil 5.8um, B=3.96 T α0α0 α1α1 Xsec(p0): 0.01 mb Beam: ~30 pnA Duration: 8 hr 12 C( 12 C,p) 23 Na 12 C( 12 C,  ) 20 Ne

Simulation: E cm =2.0 MeV, Al-foil 5.8um Z(m) E(MeV) α0α0 α1α1 p2 p3 P4,p5 p6 p0 p1 Xsec(p0): 1 pb

Estimation of event rate Table 1 Comparisons among different experiments studying the 12 C+ 12 C fusion Experiment Beam intensit y (p  A) Detector efficiency Event Rate (evt/day) E cm =2.1 MeV Naples (world record) % 0.5 (proton only) ND SAND4045% 120 =120*2*0.5 ND SAND + Gamma %(SAND)*8% (Gamma) 10 =10*2*0.5 ND SAND + Gamma %(SAND)*32% (Gamma) 38 =38*2*0.5 ND SSNAP4030% 80 =80*2*0.5 1.J. Zickefoose, U. Conn. Thesis (2010). 2. Only took the photopeak efficiency (440 keV and 1630 keV) 3. Used all the gamma energy > 0.1 MeV 2.1 MeV: ~ b 1.7 MeV: ~ b

Search of the potential resonances in the 12 C+ 12 C fusion reaction using the 24 Mg( ,  ’) reaction  Establish correlation between the two reactions at higher energies  Provide prediction at lower energies with 24 Mg( ,  ’) Grand Raiden at RCNP, Osaka University Precise energy calibration (<20 keV)  confirm the correlation Excellent energy resolution (<50 keV)  Resolving states Measurement of angular distribution  Check spin assignment (Nov. 2011) 24 Mg( α, α’ ) measurement at RCNP 16 O   12 C AMD+GCM calculation by Y. Kanada-Enyo

E c.m. ( 12 C+ 12 C) Black: 12 C( 12 C, α) 20 Ne Red: 12 C( 12 C,p) 23 Na Black: 4.5 deg Blue: 0 deg Preliminary result Red: 0+ Blue: 2+ Mint: 4+ S* factor Strength Counts C( 12 C,p 0,1 ) 24 Mg( ,  ’)

Summary  Set an upper limit for potential existed resonances in 12 C+ 12 C fusion  Silicon Array at Notre Dame (SAND), efficient thick target method:  to measure cross section of 12 C+ 12 C precisely (3MeV – 6MeV)  Disadvantage: suffer from background at lower energies  Particle-Gamma coincidence method:  to obtain reliable experimental data at lower energies (1.7MeV – 3MeV)  Disadvantage: not be able to detect p 0 and α 0  Solenoid spectrometer:  to obtain data of p 0 and α 0 channels  Indirect method:  To search potential resonances of 12 C+ 12 C fusion by studying 24 Mg(α,α’)

Collaborators Efficient thick target method (University of Notre Dame) Brian Bucher, S. Almaraz-Calderon, A. Alongi, D. Ayangeakaa, A. Best, Craig Cahillane, E. Dahlstroma, Q. Li, S. Lyons, N. Paul, M. Smith, Wanpeng Tan, and Xiao-Dong Tang ND-IU-ANL-CIAE carbon fusion project (SAND,SSNAP) University of Notre Dame: B. Bucher, A. Howard, J. Kolata, A. Roberts, W.P. Tan, X.D. Tang China Institute of Atomic Energy: X.X. Bai, B. Guo, Y.J. Li, W.P. Liu Argonne National Laboratory: H. Esbensen, C.L. Jiang, K.E. Rehm Indiana University Bloomington: R.de Souza, S. Hudan 24 Mg(α, α’) measurement at RCNP University of Notre Dame: B. Bucher, G.Berg, R. DeBoer, U. Garg, J. Goerres, A. Long, R. Talwar, X.D. Tang, M. Wiescher Kyoto University: T. Kawabata, N. Yokota, K. Tomosuke, Y. Matsuda, T. Kadoya Osaka University: A. Tamii, H. Fujita, Y. Fujita, K. Hatanaka, B. Liu, K. Miki Niigata University: T. Itoh Texas A&M University: Y.-W. Lui University of Birmingham: M. Freer

24 Mg

12 C+ 12 C Fusion 12 C( 12 C,p) 23 Na (Q=2.24 MeV) 12 C( 12 C,  ) 20 Ne (Q=4.62 MeV) 12 C( 12 C,n) 23 Mg (Q=-2.62MeV) Light particle: , p, n Gamma: 440 keV (p channel) 1634 keV ( channel) Fusion residue: 20 Ne, 23 Na … no success under barrier 23 Mg: decay spectroscopy Light particle: , p, n Gamma: 440 keV (p channel) 1634 keV ( channel) Fusion residue: 20 Ne, 23 Na … no success under barrier 23 Mg: decay spectroscopy Range investigated E c.m. =1 – 3MeV

Naples : 10 puA beam; 1.5% efficiency, 0.5 evt/day ( proton channel only ); ND-ANL-IU: ~ 40 puA beam; 45% efficiency, 120 evt/day (proton and alpha); If add particle + gamma coincidence: 120 *8%= 9.6 evt/day Naples : 10 puA beam; 1.5% efficiency, 0.5 evt/day ( proton channel only ); ND-ANL-IU: ~ 40 puA beam; 45% efficiency, 120 evt/day (proton and alpha); If add particle + gamma coincidence: 120 *8%= 9.6 evt/day A 5 MV Pelletron with ECR source in terminal is being built. It is expected to provide beam in the summer of Estimation of energy limit

[Costantini et al., Rep. Prog. Phys. 72, (2009)] Astrophysical important energy range: 1-3 MeV Large uncertainties in extrapolation Need better data at lower energies! 12 C+ 12 C fusion at low energies 12 C( 12 C,p) 23 Na 12 C( 12 C,  ) 20 Ne 12 C( 12 C,n) 23 Mg  ~ MeV Cooper resonance (2009)

Beam energy Reconstructed reaction energy: E reaction (MeV) Count Red: Q(p 0 )=2.24 MeV Black: Q(p 1 )=1.80 MeV With knowing the exact reaction Q value (Q)  Good reaction energy determination (90 keV for Elab  45 keV for Ecm). Determination of reaction energy 12 C( 12 C, p) 23 Na E reaction Q, E proton, θ Q=Qvalue-E excited ( 23 Na) E proton (MeV) Angle (deg) P 0 : protons with 23 Na at ground state P 1 : protons with 23 Na at first excited state P0P0 P1P1 P0P0 p1p1

S* factor extracted from E beam =8.2 MeV p0p0 P1P1 Simulation with a constant S* Ecm (MeV) S* factor (MeV b) E cm =0.5*E beam S* factor from a thick target measurement Ecm = 4.1 MeV

Lab Angle (deg) E cm (MeV) Angular distribution for the 12 C( 12 C, p 0 )and 12 C( 12 C,p 1 ) d  /d  *E*exp(87.21/sqrt(E)+0.46*E) Zickfoose only measure d  /d  at 135 deg in the lab frame. Zickfoose, Ph.D. Thesis, U. Conn 2010

P 0 angular distribution at E cm =5 MeV P 1 angular distribution at E cm =5 MeV P 3 angular distribution at E cm =5 MeV

P 0 angular distribution at E cm =4.1 MeV P 1 angular distribution at E cm =4.1 MeV P 3 angular distribution at E cm =4.1 MeV

The fractions for the gamma-decay channels 440 keV for 23 Na1634 keV for 20 Ne Proton and alpha channel data taken from Mazarakis