Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.

Slides:



Advertisements
Similar presentations
Chapter 6 The Muscular System
Advertisements

Chapter 6 The Muscular System
Chapter 6 The Muscular System
The Muscular System.
The Muscular System.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Objective 3 Describe and diagram the microscopic structure of skeletal muscle fibers.
The Muscular System Muscles are responsible for all types of body movement Three basic muscle types are found in the body Skeletal muscle Cardiac muscle.
The Muscular System Essentials of Human Anatomy & Physiology
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
Chapter 6 The Muscular System
Muscular System Mahoney LHS 1/20/07.
Skeletal Muscle Characteristics
The Muscular System.
Chapter 6 The Muscular System
The Muscular System 1.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
Essentials of Human Anatomy & Physiology Seventh Edition Elaine N. Marieb Chapter 6 The Muscular System Edited by Dr. Ryan Lambert-Bellacov.
Essentials of Anatomy and Physiology Fifth edition Seeley, Stephens and Tate Slide 2.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin.
Quiz – Write question and answer
Muscular System. Muscular System Functions: 1. produce movement 2. Maintain posture 3. Stabilize joints 4. Generate heat 5. Move substances (fluid, food.
Muscular System. Muscle Video Characteristics of Muscles Skeletal and smooth muscle cells are elongated (muscle cell = muscle fiber) Contraction of muscles.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Chapter 6 The Muscular System
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 36-2 The Muscular System.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
The Muscular System Slide 6.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscles are responsible for all types of body.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
Chapter 6 The Muscle Anatomy. The Muscular System Functions  Movement  Maintain posture  Stabilize joints  Generate heat Three basic muscle types.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
Muscle Structure Review & Physiology Adopted from Marieb’s A & P.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Chapter The System.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter.
Chapter 6 The Muscular System
Chapter 6 The Muscular System
The Muscular System.
Chapter 6 The Muscular System
Chapter 6 The Muscular System
Muscle Response to Strong Stimuli
Chapter 6 The Muscular System
Lecture 5 The Muscular System
Chapter 6 The Muscular System
The Muscular System Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings.
Chapter 8 muscular system
The Muscular System.
Chapter 9 The Muscular System
Chapter 6 The Muscular System
Chapter 6 The Muscular System
Chapter 6 The Muscular System
Chapter 7 The Muscular System
The Muscular System.
Chapter 6 The Muscular System
The Muscular System Anatomy and Physiology: Chapter 6
Chapter 6 The Muscle Anatomy
Chapter 6 The Muscular System
Chapter 6 The Muscular System
The Muscular System Muscles are responsible for all types of body movement – they contract or shorten and are the machine of the body Three basic muscle.
Presentation transcript:

Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter 6 The Muscular System

The Muscular System Slide 6.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  responsible for all types of body movement – contract or shorten; the “machine” of the body  3 muscle types  Skeletal muscle  Cardiac muscle  Smooth muscle

Characteristics of Muscles Slide 6.2 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscle cells -elongated (muscle cell = muscle fiber)  Contraction due to movement of microfilaments  All muscles share terminology  Prefix myo - muscle  Prefix mys - muscle  Prefix sarco - flesh

Skeletal Muscle Characteristics Slide 6.3 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Most attached to bones by tendons  Cells are multinucleate  Striated –visible banding  Voluntary –conscious control  surrounded & bundled by connective tissue  great force; tires easily

Connective Tissue Wrappings of Skeletal Muscle Slide 6.4a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Endomysium – around single muscle fiber  Perimysium – around a fascicle (bundle) of fibers Figure 6.1

Connective Tissue Wrappings of Skeletal Muscle Slide 6.4b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Epimysium – covers entire skeletal muscle  Fascia – on outside of the epimysium Figure 6.1

Skeletal Muscle Attachments Slide 6.5  Epimysium blends into connective tissue attachment  Tendon – cord-like structure  Aponeuroses – sheet-like structure  Sites of muscle attachment  Bones  Cartilages  Connective tissue coverings

Smooth Muscle Characteristics Slide 6.6 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  no striations  Spindle-shaped cells  Single nucleus  Involuntary – no conscious control  walls of hollow organs, vessels  Slow, sustained and tireless Figure 6.2a

Cardiac Muscle Characteristics Slide 6.7 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  striations  Usually single nucleus  Joined at intercalated disc  Involuntary  only in the heart  Steady pace! Figure 6.2b

Function of Muscles Slide 6.8 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Produce movement  Maintain posture  Stabilize joints  Generate heat

Microscopic Anatomy of Skeletal Muscle Slide 6.9a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Cells are multinucleate  Nuclei are just beneath the sarcolemma Figure 6.3a

Microscopic Anatomy of Skeletal Muscle Slide 6.9b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Sarcolemma – specialized plasma membrane  Sarcoplasmic reticulum – specialized smooth endoplasmic reticulum Figure 6.3a

Microscopic Anatomy of Skeletal Muscle Slide 6.10a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Myofibril  Bundles of myofilaments  Myofibrils are aligned to give distinct bands  I band = light band  A band = dark band Figure 6.3b

Microscopic Anatomy of Skeletal Muscle Slide 6.10b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Sarcomere  Contractile unit of a muscle fiber

Microscopic Anatomy of Skeletal Muscle Slide 6.11a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Organization of the sarcomere  Thick filaments = myosin filaments  Composed of the protein myosin  Has ATPase enzymes Figure 6.3c

Microscopic Anatomy of Skeletal Muscle Slide 6.11b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Organization of the sarcomere  Thin filaments = actin filaments  Composed of the protein actin Figure 6.3c

Microscopic Anatomy of Skeletal Muscle Slide 6.12a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Myosin filaments have heads (extensions, or cross bridges)  Myosin and actin overlap somewhat Figure 6.3d

The Sliding Filament Theory of Muscle Contraction Slide 6.17a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Activation by nerve causes myosin heads (crossbridges) to attach to binding sites on the thin filament  Myosin heads then bind to the next site of the thin filament Figure 6.7

The Sliding Filament Theory of Muscle Contraction Slide 6.17b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  This continued action causes a sliding of the myosin along the actin  The result is that the muscle is shortened (contracted) Figure 6.7

The Sliding Filament Theory Slide 6.18 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.8

Slide 6.18 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.8 Sarcomere

Properties of Skeletal Muscle Activity (single cells or fibers) Slide 6.13 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Irritability – ability to receive and respond to a stimulus  Contractility – ability to shorten when an adequate stimulus is received

Nerve Stimulus to Muscles Slide 6.14 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Skeletal muscles must be stimulated by nerve to contract (motor neruron)  Motor unit  One neuron +  Muscle cells stimulated by that neuron Figure 6.4a

Nerve Stimulus to Muscles Slide 6.15a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Neuromuscular junctions (NMJ)– association site of nerve and muscle Figure 6.5b

Nerve Stimulus to Muscles Slide 6.15b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Synaptic cleft – gap between nerve and muscle  Nerve and muscle do not make contact  Area between nerve and muscle filled with interstitial fluid Figure 6.5b

Transmission of Nerve Impulse to Muscle Slide 6.16a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Neurotransmitter – chemical released by nerve upon arrival of nerve impulse  The neurotransmitter for skeletal muscle is acetylcholine  Neurotransmitter attaches to receptors on the sarcolemma  Sarcolemma becomes permeable to Na +

Transmission of Nerve Impulse to Muscle Slide 6.16b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Na + rushing into the cell generates an action potential  Once started, muscle contraction cannot be stopped

Contraction of a Skeletal Muscle Slide 6.19 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  contraction is “all or none” not all fibers may be stimulated during the same interval Different combinations of contractions may give differing responses

Contraction of a Skeletal Muscle Slide 6.19 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings   Graded responses – different degrees of skeletal muscle shortening, rapid stimulus = constant contraction or tetanus

Muscle Response to Strong Stimuli Slide 6.22 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscle force depends upon the number of fibers stimulated  More fibers contracting results in greater muscle tension  Muscles can continue to contract unless they run out of energy

Energy for Muscle Contraction Slide 6.23 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Initially, stored ATP for energy  Bonds of ATP are broken to release energy  Only 4-6 seconds worth of ATP is stored by muscles  After this initial time, other pathways must be utilized to produce ATP

Energy for Muscle Contraction Slide 6.24 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Direct phosphorylation  Muscle cells contain creatine phosphate (CP)  CP - high-energy molecule  After ATP is depleted, ADP is left  CP transfers energy to ADP, to regenerate ATP  CP supplies are exhausted ~ 20 seconds Figure 6.10a

Energy for Muscle Contraction Slide 6.26a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Anaerobic glycolysis  breaks down glucose without oxygen  to pyruvic acid to produce some ATP  Pyruvic acid is converted to lactic acid Figure 6.10b

Energy for Muscle Contraction Slide 6.26b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  This reaction is not as efficient, but is fast  Huge amounts of glucose are needed  Lactic acid produces muscle fatigue Figure 6.10b

Energy for Muscle Contraction Slide 6.25 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Aerobic Respiration  metabolic pathways that occur in mitochondria  Glucose is broken down to CO 2 and water, releasing energy  This is a slower reaction that requires continuous O 2 Figure 6.10c

Energy source???? Slide 6.25 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.10c

Types of Muscle Contractions Slide 6.28 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Isotonic contractions  Myofilaments are able to slide past each other during contractions  The muscle shortens  Isometric contractions  Tension in the muscles increases  The muscle is unable to shorten

Muscle Tone Slide 6.29 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Some fibers are contracted even in a relaxed muscle  Different fibers contract at different times to provide muscle tone  The process of stimulating various fibers is under involuntary control

Muscles and Body Movements Slide 6.30a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Movement is attained due to a muscle moving an attached bone Figure 6.12

Muscles and Body Movements Slide 6.30b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscles - attached to at least 2 points  Origin – attachment to a immoveable bone  Insertion – attachment to an movable bone Figure 6.12

Effects of Exercise on Muscle Slide 6.31 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Results of increased muscle use  Increase in muscle  Size, strength, efficiency  becomes more fatigue resistant

Types of Ordinary Body Movements Slide 6.32 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Flexion – decreases angle of joint and brings two bones closer together  Extension- opposite of flexion  Rotation- movement of a bone in longitudinal axis, shaking head “no”  Abduction/Adduction (see slides)  Circumduction (see slides)

Body Movements Slide 6.33 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.13

Left: Abduction – moving the leg away from the midline Above – Adduction- moving toward the midline Right: Circumduction: cone- shaped movement, proximal end doesn’t move, while distal end moves in a circle.

Types of Muscles Slide 6.35 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Prime mover, agonist – muscle with the major responsibility for a certain movement  Antagonist – muscle that opposes or reverses a prime mover  Synergist – muscle that aids a prime mover in a movement and helps prevent rotation

Muscle Fatigue and Oxygen Debt Slide 6.27 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  muscle is fatigued, unable to contract  muscle fatigue is due to oxygen debt  Oxygen must be “repaid” to tissue to remove oxygen debt  Oxygen is required to get rid of accumulated lactic acid  Increasing acidity (from lactic acid) and lack of ATP causes the muscle to contract less

Naming of Skeletal Muscles Slide 6.36a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Direction of fibers  Ex: rectus (straight)  Relative size  Ex: maximus (largest)

Naming of Skeletal Muscles Slide 6.36b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Location  Ex: many muscles are named for bones (e.g., temporalis)  Number of origins  Ex: triceps (three heads)

Naming of Skeletal Muscles Slide 6.37 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Location of origin and insertion  Ex: sterno (on the sternum)  Shape  Ex: deltoid (triangular)  Action  Ex: flexor and extensor (flexes or extends a bone)

Head and Neck Muscles Slide 6.38 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.14

Trunk Muscles Slide 6.39 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.15

Deep Trunk and Arm Muscles Slide 6.40 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.16

Muscles of the Pelvis, Hip, and Thigh Slide 6.41 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.18c

Muscles of the Lower Leg Slide 6.42 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.19

Superficial Muscles: Anterior Slide 6.43 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.20

Superficial Muscles: Posterior Slide 6.44 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.21

Disorders relating to the Muscular System Muscular Dystrophy: inherited, muscle enlarge due to increased fat and connective tissue, but fibers degenerate and atrophy –Duchenne MD: lacking a protein to maintain the sarcolemma –Myasthemia Gravis: progressive weakness due to a shortage of acetylcholine receptors