AGU, 2003 Greenland Iceland Shet- land Faroes image:AGU 2003 Cost ‐ efficient monitoring of the main Atlantis inflow to the Arctic Mediterranean B. Hansen,

Slides:



Advertisements
Similar presentations
OceanSITES by Svein Østerhus Station M (66N, 2E) Norwegian Sea North Atlantic Nordic Seas Exchanges Weddell.
Advertisements

The retroflection of the Faroe Current into the Faroe-Shetland Channel Karin Margretha H. Larsen, Bogi Hansen and Hjálmar Hátún Reykjavík, ICES ASC 2013.
FRESHWATER FLUX FROM BAY OF BENGAL AND SOUTH CHINA SEA AND ITS IMPACTS ON THE ITF R. Dwi Susanto 1,2 & Quanan Zheng 1 1 Department of Atmospheric and Oceanic.
SeaWiFS-based chlorophyll in selekt Chl [mg m -3 ] A trans-Atlantic linkage - between the Newfoundland and Rockall basins Hjálmar Hátún, and Annebritt.
Reanalysis of the Iceland-Faroe inflow Bogi Hansen, Karin Margretha H. Larsen, Hjálmar Hátún and Svein Østerhus NACLIM CT2, Hamburg, January 2015.
RAPID/MOCHA/WBTS THE SEASONAL CYCLE OF THE AMOC AT 26ºN Eastern Boundary Considerations Gerard McCarthy, Eleanor Frajka- Williams, Aurélie Duchez and David.
Water mass transformation in the Iceland Sea Irminger Sea, R/V Knorr, October 2008 Kjetil Våge Kent Moore Steingrímur Jónsson Héðinn Valdimarsson.
Slide 1 Predicting the Climate of Europe: the THOR project Laurent Mortier – University of Paris for Detlef Quadfasel (co-ordinator), University of Hamburg.
ADCP Measurement Problems Denmark Strait Overflow Longranger 75 kHz ongoing Broadband 75 kHz Quartermaster 150 kHz.
Transports between Iceland and Scotland: Results from the Extended Ellett Line Clare Johnson (1), Stuart Cunningham (1), N. Penny Holliday.
Observed variability of hydrography and transport at 53°N in the Labrador Sea Johannes Karstensen GEOMAR Helmholtz Centre for Ocean Research Kiel With.
C. A. Collins 1, R. Castro Valdez 2, A.S. Mascarenhas 2, and T. Margolina 1 Correspondence: Curtis A. Collins, Department of Oceanography, Naval Postgraduate.
Darcy Glenn 1, Holly Ibanez 2, Amelia Snow 3, Oscar Schofield 3 1 University of Vermont 2 Florida Institute of Technology 3 Rutgers University Designing.
The Faroe Current: T-S properties and volume, heat and salt transports Karin Margretha H. Larsen Bogi Hansen, Hjálmar Hátún, Svein Østerhus Extended Ellett.
Wind driven seasonal variations in the transport of NAW through the Faroe-Shetland Channel also acknowledge: European Commission (MOEN – ASOF EU-E, Framework.
Lower Snake Modeling and LGR Monitoring Year 1 Report Summary Christopher Cook BPA Project
Sensitivity of atmospheric near-land temperature in Northern Europe to SST Andrey Vlasenko, Armin Köhl, Detlef Stammer University Hamburg.
Atlantic water transports to the Arctic and their impact on sea ice
THOR-CT3 Summary 26 September 2012
Reanalysis of the Iceland-Faroe inflow Bogi Hansen, Karin Margretha H. Larsen, Hjálmar Hátún and Svein Østerhus ICES WGOH, San Sebastian, March 2015.
Indirect estimate of fluxes between boundary current and deep basins in the Nordic Seas: heat and freshwater budgets Katrin Latarius 1 and Detlef Quadfasel.
Winter sea ice variability in the Barents Sea C. Herbaut, M.-N. Houssais et A.-C. Blaizot LOCEAN, UPMC.
Steffen M. Olsen, DMI, Copenhagen DK Center for Ocean and Ice Interpretation of simulated exchange across the Iceland Faroe Ridge in a global.
Little Diomede Island, Bering Strait BERING STRAIT THROUGHFLOW ARC Comparison of Water Properties and Flows in the U.S. and Russian Channels of.
NACLIM CT1/CT3 1 st CT workshop April 2013 Hamburg (DE) Johann Jungclaus.
NACLIM CT 2 Monitoring of North Atlantic parameters New Lead: Johannes Karstensen (GEOMAR) and Karin M. H. Larsen (HAV) WP 2.1 Exchanges across the Greenland-Scotland.
Is the Transport of Atlantic Water in the Faroe Shetland Channel changing? – A summary of 20 years of observations Bee Berx1, Bogi Hansen2, Svein Østerhus3,
NACLIM annual meeting - 15/10/ NACLIM Annual Meeting 2014 (Berlin) WP4.2 - Extraction of city morphology indicators for urban climate modeling: a.
NACLIM CT 2 Monitoring of North Atlantic parameters Core Theme sessions Trieste 2 nd Oct 9:00-13:00 Lead: Svein Østerhus and Johannes Karstensen WP 2.1.
North Atlantic Observing System
THOR CT3 Meeting – Torshavn 2009 – Fischer/Visbeck/Zantopp/Nunes In the Labrador Sea, overflow water from the Denmark Strait and from the Iceland-Scotland.
The Pacific Gateway to the Arctic – Quantifying and Understanding Bering Strait Oceanic Fluxes R. Woodgate 1, T. Weingartner 2, T. Whitledge 2, Ron Lindsay.
CT1/CT3 Meeting April 2013 Hamburg Predictability associated with the Atlantic ocean SST variability G. Gastineau, J. Garcia-Serrano, C. Frankignoul.
Monitoring Heat Transport Changes using Expendable Bathythermographs Molly Baringer and Silvia Garzoli NOAA, AOML What are time/space scales of climate.
S 1 CT2 Meeting 5-6 March 2013 Hamburg UHAM Plans Kerstin Jochumsen.
SEAWATER PROPERTIES: SALINITY All water, even rain water, has dissolved chemicals called “salts” Salinity = the amount of dissolved salts in the water.
An example of vertical profiles of temperature, salinity and density.
S 1 CT1 Meeting April 2013 Hamburg Clarifications on reporting duties Chiara Bearzotti Project office.
A dynamical/statistical approach to predict multidecadal AMOC variability and related North Atlantic SST anomalies Mojib Latif GEOMAR Helmholtz Centre.
The impact of the extreme Arctic sea ice conditions on weather and climate in Europe CT1/CT3 Meeting April 2013 Hamburg Lingling Suo; Yongqi Gao.
AGU, 2003 image:AGU 2003 How will the Northeast Atlantic and its living resources respond to global climate change? Nordic Seas Greenland Iceland Norway.
Flow of Atlantic water to the North Icelandic shelf Steingrímur Jónsson 1,2 and Héðinn Valdimarsson 1 1 Marine Research Institute and 2 University of Akureyri.
EARTH’S CLIMATE PAST and FUTURE SECOND EDITION CHAPTER 17 Climatic Changes Since the 1800s WILLIAM F. RUDDIMAN © 2008 W. H. Freeman and Company.
Seawater Chapter 15 Section 2.
Labrador Sea Export -- the DWBC at 53°N as a Fingerprint of the AMOC? J. Fischer, J. Karstensen, M. Visbeck, R. Zantopp, R. Kopte Annual Conference, Berlin.
Image:AGU 2003 Steingrímur Jónsson, University of Akureyri & Marine Research Institute Héðinn Valdimarsson, Marine Research Institute, Reykjavik Bogi Hansen,
Nutrient fluxes in the eastern North Atlantic Clare Johnson (1), Stuart Cunningham (1), Penny Holliday (2) and Stefan Gary.
S 1 CT2 Meeting 5-6 March 2013 Hamburg NACLIM, ECOMS and Horizon2020 Detlef Quadfasel.
Smelting og ferskvann svekker ikke nødvendigvis Atlanterhavsstrømmen J.EVEN.Ø. NILSEN, NANSENSENTERET & BJERKNESSENTERET, TOR ELDEVIK, DOROTEA IOVINO,
Current Research: Seasonality of Arctic Mediterranean Exchanges Christoph Rieper, PhD Student, University of Hamburg, WP 2.3 Arctic Mediterranean communicates.
Bogi Hansen & Hjálmar Hátún Faroe Marine Research Institute Iceland Scot- land Nordic Seas Faroes 0.8 Sv 3.8 Sv Greenland Østerhus et al., GRL 2005 The.
Effect of the Subpolar Gyre on the eastern North Atlantic Clare Johnson (SAMS)*, Mark Inall (SAMS), Toby Sherwin (SAMS) *
Bogi Hansen, Hjálmar Hátún, Regin Kristiansen, Steffen M. Olsen and Svein Østerhus Iceland Scot- land Nordic Seas Faroes 0.8 Sv 3.8 Sv Greenland Østerhus.
S 1 CT1/CT3 Meeting April 2013 Hamburg WP 3.1 Suitability of the ocean observing system components for initialization Wonsun Park GEOMAR.
EGU meeting 8 April 2013 Vienna FBC Overflow Bogi Hansen HAV.
The Arctic–Atlantic Thermohaline Circulation ELDEVIK, T. & J.EVEN.Ø. NILSEN, J. CLIM. 26, 2013 OS14 HONOLULU U ≈ 9 Sv ∆T ≈ 8 ºC ∆S ≈ 1 heat.
1 Atlantic Water in the Arctic Ocean – can we estimate the heat supplied through its inflow? Ursula Schauer + Agnieszka Beszczynska-Möller, Eberhard Fahrbach,
Increased oceanic heat transport in the main Atlantic inflow branch to the Nordic Seas Bogi Hansen, Karin Margretha H. Larsen Hjálmar Hátún,
from space Heat by winds by ocean currents
Deliverable 2.8 Optimization of the GSR inflow arrays
Path Forward Discussion
Task 2.3 Optimization and coordination of existing TMA systems, improved data delivery for predictions and identification of gaps [Lead: HAV; Participants:
Processes and flow over the Iceland-Faroe Ridge
Transport Mooring Arrays in NACLIM
The coupling between Atlantic inflow and overflow in the Iceland-Scotland region Bogi Hansen, Karin M. H. Larsen, Hjálmar Hátún, Svein Østerhus, Steffen.
Mid Atlantic Water Property Measurements W. S
ADCP Referenced Geostrophic Velocities and Transport Part II: Along-Shore LT Eric Macdonald Line 85.
CTD RELATIVE GEOSTROPHIC VELOCITY VS. ADCP VELOCITY
in situ or Altimetry ? Arctic – Subarctic Ocean Fluxes focus topics:
Presentation transcript:

AGU, 2003 Greenland Iceland Shet- land Faroes image:AGU 2003 Cost ‐ efficient monitoring of the main Atlantis inflow to the Arctic Mediterranean B. Hansen, K.M.H Larsen, H. Hátún, S. Østerhus Atlantic inflow Arctic Mediterranean North Atlantic Atlantic 0.9 Sv 3.5 Sv 2.7 Sv Optimizing the North Atlantic observing system

AGU, 2003 image:AGU 2003 Iceland Faroes Monitoring section

The Monitoring section through the IF-inflow Salinity Velocity (cm/s) ADCPs

Weekly averaged Atlantic inflow between Iceland and Faroes

Problems with the existing monitoring system Extrapolating ADCPs to surface Interpolating between ADCPs Lack of T and S data Money and effort

Instrumentation

Future monitoring system One Deepwater ADCP Two trawl- resistant Bottom Temp- erature loggers Satellite altimetry

Temperature from up to 95 CTD cruises Atlantic water Average 4°C isotherm ± Standard deviation Satellite altimetry ADCP Bottom temperature How much of the variance in the lower boundary of Atlantic layer can be explained by measured variables 19% 21% 15% 15% 15% 3% 3% 3% explained by ADCP 17% 34% 42% 60% 48% 30% 25% 16% explained by Altimetry 50% explained by Bottom temp. Standard CTD station Monitoring heat- and salt-, but also volume transport requires monitoring temperature and salinity Arctic water

Temperature sensor Acoustic modem TEmperature Longterm Logging by BOttom Grounded Instrumentation Battery capacity > 10 years NACLIM

The research leading to these results has received funding from the European Union 7th Framework Programme (FP ), under grant agreement n NACLIM