Momentum CHAPTER 9a So What’s Momentum ? Momentum = mass x velocity This can be abbreviated to :. momentum = mv Or, if direction is not an important.

Slides:



Advertisements
Similar presentations
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
Advertisements

Ch 9.1 Impulse and Momentum Monday January 24, 2011.
8.1 Momentum A moving object can have a large momentum if it has a large mass, a high speed, or both.
Momentum So What’s Momentum ? Momentum = mass x velocity This can be abbreviated to :. momentum = mv Or, if direction is not an important factor :..
Chapter 6: MOMENTUM.
Conceptual Physics 11th Edition
Momentum and Impulse Chapter 9.
Momentum is a measure of inertia in motion. Momentum is equal to mass multiplied by velocity. p = mv.
Notes Chapter 8 Momentum Objectives:
Conservation of Momentum Momentum before interaction = Momentum after interaction.
Chapter 6 Momentum Impulse Impulse Changes Momentum Bouncing
Momentum Chapter 8. Momentum Chapter 8 Objectives Define momentum. Define impulse and describe how it affects changes in momentum. Explain why an impulse.
Momentum and Momentum Conservation Momentum Impulse Conservation of Momentum Collision in 1-D Collision in 2-D.
SACE Stage 1 Conceptual Physics
Think! Can you think of a case where a roller skate and a truck would have the same momentum? 8.1 Momentum.
Iraq moves to defuse war momentum Storm Gains Momentum, But Not Power, In Trek Across Gulf Group hopes to gain Momentum with improv events Push For FDA.
Unit 4: Momentum and Energy Chap. 7 Momentum Which is harder to stop, a truck traveling at 55 mi/hr or a small car traveling at 55 mi/hr?  Why?
8 Momentum Momentum is conserved for all collisions as long as external forces don’t interfere.
Momentum Chin-Sung Lin.
Momentum, Impulse and Recoil. A truck is rolling down a hill than a roller skater with the same speed; which has the greater momentum? Momentum.
CHAPTER 6 Momentum.
Chapter 7 – Momentum Inertia in motion!!! An object in motion will stay in motion until a force acts to stop it. Momentum = mass x velocity (kg * m/s)
Conceptual Physics 11th Edition
6-1: Momentum and Impulse
Chapter 7 Momentum. Remember: Inertia is the resistance of any moving or nonmoving object to change its state of motion.
Momentum: Unit 5. What is Momentum?  Momentum: ___________ in motion  Momentum= Mass x Velocity  ____________ = Mass x Speed – when direction is not.
CH 5- MOMENTUM BIG IDEA: THE FORCE ACTING ON AN OBJECT MULTIPLIED BY THE TIME THAT FORCE ACTS EQUALS THE OBJECTS CHANGE IN MOMENTUM.
8 Momentum Momentum is conserved for all collisions as long as external forces don’t interfere.
8 Momentum The law of conservation of momentum states that, in the absence of an external force, the momentum of a system remains unchanged. 8.4 Conservation.
8 Momentum Momentum is conserved for all collisions as long as external forces don’t interfere.
8 Momentum The law of conservation of momentum states that, in the absence of an external force, the momentum of a system remains unchanged. 8.4 Conservation.
Unit 5 Momentum Impulse Impulse Changes Momentum Bouncing
Momentum and Collisions
Momentum is a measure of inertia in motion
Conceptual Physics 11th Edition
Impulse & Momentum.
Chapter 6 Momentum Impulse Impulse Changes Momentum Bouncing
MOMENTUM & INERTIA Herron Physics, Unit 4.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
Momentum and Impulse Chapter 9.
Momentum CHAPTER # 5 Momentum.
Conservation of Energy
Conceptual Physics 11th Edition
CHAPTER # 8 Momentum.
Momentum CHAPTER # 5 Momentum.
Momentum Momentum = mass x velocity
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
Impulse.
Momentum.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
COLLISIONS ELASTIC COLLISIONS INELASTIC COLLISIONS
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
Chapter 6 Momentum Impulse Impulse Changes Momentum Bouncing
The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this chapter we are concerned only with.
Presentation transcript:

Momentum CHAPTER 9a

So What’s Momentum ? Momentum = mass x velocity This can be abbreviated to :. momentum = mv Or, if direction is not an important factor :.. momentum = mass x speed So, A really slow moving truck and an extremely fast roller skate can have the same momentum.

If momentum changes, it’s because mass or velocity change. Most often mass doesn’t change so velocity changes and that is acceleration. And mass x acceleration = force Applying a force over a time interval to an object changes the momentum Force x time interval = Impulse Impulse = F t or Ft = m v Ft = m v Impulse and Momentum

FORCE An object at rest has no momentum, why? Because anything times zero is zero (the velocity component is zero for an object at rest) To INCREASE MOMENTUM, apply the greatest force possible for as long as possible. Examples : pulling a sling shot drawing an arrow in a bow all the way back a long cannon for maximum range hitting a golf ball or a baseball. (follow through is important for these !) TIME MOMENTUM

SOME VOCABULARY : impulse : impact force X time (newton. sec). Ft = impulse impact : the force acting on an object (N). usually when it hits something. impact forces : average force of impact

Decreasing Momentum Which would it be more safe to hit in a car ? Knowing the physics helps us understand why hitting a soft object is better than hitting a hard one. MOMENTUM mvmv mvmv FtFt FtFt

In each case, the momentum is decreased by the same amount or impulse (force x time) Hitting the haystack extends the impact time (the time in which the momentum is brought to zero). The longer impact time reduces the force of impact and decreases the deceleration. Whenever it is desired to decrease the force of impact, extend the time of impact ! MOMENTUM

DECREASING MOMENTUM If the time of impact is increased by 100 times (say from.01 sec to 1 sec), then the force of impact is reduced by 100 times (say to something survivable). EXAMPLES : Padded dashboards on cars Airbags in cars or safety nets in circuses Moving your hand backward as you catch a fast-moving ball with your bare hand or a boxer moving with a punch. Flexing your knees when jumping from a higher place to the ground. or elastic cords for bungee jumping Using wrestling mats instead of hardwood floors. Dropping a glass dish onto a carpet instead of a sidewalk.

EXAMPLES OF DECREASING MOMENTUM Bruiser Bruno on boxing … Increased impact time reduces force of impact Barney Jervais on bungee Jumping … F t = change in momentum F t = change in momentum Ft = Δmv applies here. mv = the momentum gained before the cord begins to stretch that we wish to change. Ft = the impulse the cord supplies to reduce the momentum to zero. Because the rubber cord stretches for a long time the average force on the jumper is small.

Questions : When a dish falls, will the impulse be less if it lands on a carpet than if it lands on a hard ceramic tile floor ? The impulse would be the same for either surface because there is the same momentum change for each. It is the force that is less for the impulse on the carpet because of the greater time of momentum change. There is a difference between impulse and impact. If a boxer is able to increase the impact time by 5 times by “riding” with a punch, by how much will the force of impact be reduced? Since the time of impact increases by 5 times, the force of impact will be reduced by 5 times.

Example, Page 149 A force of 20 N acts on a 2.0 kg mass for 10 s. Compute the impulse and the change in velocity of the mass. Impulse: –Ft = (20N)(10s) –Ft = 200 Ns Change in velocity: –Ft = m∆v –∆v = Ft/m –∆v = 200 Ns/2.0 kg = 100 m/s (in direction of F)

Example, Page 149 A car that weighs 7840 N is accelerated from rest to a velocity of 25.0 m/s east by a force of 1000 N. What was the car’s change in momentum? ∆p = m∆v ∆p = (7840N/9.81 m/s 2 ) (25.0 m/s-0m/s) ∆p = kg m/s, east ∆p = kg m/s east

Example, Page 149 A car that weighs 7840 N is accelerated from rest to a velocity of 25.0 m/s east by a force of 1000 N. How long did the force act? Ft = ∆p t = ∆p/F t = ( kg m/s)/1000 N t = s = 20 s

ELASTIC COLLISIONS INELASTIC COLLISIONS COLLISIONS Momentum transfer from one Object to another. Is a Newton’s cradle like the one Pictured here, an example of an elastic or inelastic collision?

Collisions Regardless of the type of collision – net p before collision = net p after collision Important! –SIGN of velocity indicates direction!

Problem Solving #1 A 6 kg fish swimming at 1 m/sec swallows a 2 kg fish that is at rest. Find the velocity of the fish immediately after “lunch”. net momentum before = net momentum after (net mv) before = (net mv) after (6 kg)(1 m/sec) + (2 kg)(0 m/sec) = (6 kg + 2 kg)(v after ) 6 kg. m/sec = (8 kg)(v after ) v after = 6 kg. m/sec / 8 kg 8 kg v after = ¾ m/sec v after =

Problem Solving #2 Now the 6 kg fish swimming at 1 m/sec swallows a 2 kg fish that is swimming towards it at 2 m/sec. Find the velocity of the fish immediately after “lunch”. net momentum before = net momentum after (net mv) before = (net mv) after (6 kg)(1 m/sec) + (2 kg)(-2 m/sec) = (6 kg + 2 kg)(v after ) 6 kg. m/sec + -4 kg. m/sec = (8 kg)(v after ) v after = 2 kg. m/sec / 8 kg 8 kg v after = ¼ m/sec v after =

Problem Solving #3 & #4 Now the 6 kg fish swimming at 1 m/sec swallows a 2 kg fish that is swimming towards it at 3 m/sec. (net mv) before = (net mv) after (6 kg)(1 m/sec) + (2 kg)(-3 m/sec) = (6 kg + 2 kg)(v after ) 6 kg. m/sec + -6 kg. m/sec = (8 kg)(v after ) v after = 0 m/sec Now the 6 kg fish swimming at 1 m/sec swallows a 2 kg fish that is swimming towards it at 4 m/sec. (net mv) before = (net mv) after (6 kg)(1 m/sec) + (2 kg)(-4 m/sec) = (6 kg + 2 kg)(v after ) 6 kg. m/sec + -8 kg. m/sec = (8 kg)(v after ) v after = -1/4 m/sec

CONSERVATION OF MOMENTUM To accelerate an object, a force must be applied. The force or impulse on the object must come from outside the object. EXAMPLES : The air in a basketball, sitting in a car and pushing on the dashboard or sitting in a boat and blowing on the sail don’t create movement. Internal forces like these are balanced and cancel each other. If no outside force is present, no change in momentum is possible.

The Law of Conservation of Momentum In the absence of an external force, the momentum of a system remains unchanged. This means that, when all of the forces are internal (for EXAMPLE: the nucleus of an atom undergoing. radioactive decay,. cars colliding, or. stars exploding the net momentum of the system before and after the event is the same.

Example! What is the recoil velocity of a 1.20 x 10 3 kg launcher if it projects a 20.0 kg mass at a velocity of 6.00 x 10 2 m/s? Remember, p before = p after! Before: (1.20 x 103 kg)(0 m/s) + (20.0 kg)(0 m/s) p = 0 kg m/s After: (1.20 x 10 3 kg)(v) + (20.0 kg)(6.00 x 10 2 m/s) = 0 kg m/s

Example, Continued! After: (1.20 x 10 3 kg)(v) + (20.0 kg)(6.00 x 10 2 m/s) = 0 kg m/s v = ( x 10 4 kg m/s) 1.20 x 10 3 kg V = x 10 1 m/s

QUESTIONS 1. Newton’s second law states that if no net force is exerted on a system, no acceleration occurs. Does it follow that no change in momentum occurs? If no acceleration occurs, no change occurs in velocity, so there is no change in momentum. 2. Newton’s 3 rd law states that the forces exerted on a cannon and cannonball are equal and opposite. Does it follow that the impulse exerted on the cannon and cannonball are also equal and opposite? Since the time interval and forces are equal and opposite, the impulses (F x t) are also equal and opposite.

MOMENTUM VECTORS Momentum can be analyzed by using vectors The momentum of a car accident is equal to the vector sum of the momentum of each car A & B before the collision. A B

MOMENTUM VECTORS (Continued) When a firecracker bursts, the vector sum of the momenta of its fragments add up to the momentum of the firecracker just before it exploded. The same goes for subatomic elementary particles. The tracks they leave help to determine their relative mass and type.

CHAPTER #9 - MOMENTUM Finish