Basis beeldverwerking (8D040) dr. Andrea Fuster Prof.dr. Bart ter Haar Romeny dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Convolution.

Slides:



Advertisements
Similar presentations
Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Filtering.
Advertisements

The Fourier Transform I
Linear Filtering – Part I Selim Aksoy Department of Computer Engineering Bilkent University
Spatial Filtering (Chapter 3)
Topic 6 - Image Filtering - I DIGITAL IMAGE PROCESSING Course 3624 Department of Physics and Astronomy Professor Bob Warwick.
Digital Image Processing
Basis beeldverwerking (8D040) dr. Andrea Fuster Prof.dr. Bart ter Haar Romeny dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer The Fourier Transform II.
Sliding Window Filters and Edge Detection Longin Jan Latecki Computer Graphics and Image Processing CIS 601 – Fall 2004.
Basis beeldverwerking (8D040) dr. Andrea Fuster Prof.dr. Bart ter Haar Romeny Prof.dr.ir. Marcel Breeuwer dr. Anna Vilanova Histogram equalization.
Lecture 4 Linear Filters and Convolution
6/9/2015Digital Image Processing1. 2 Example Histogram.
Image Filtering CS485/685 Computer Vision Prof. George Bebis.
1 Image filtering Hybrid Images, Oliva et al.,
7. Neighbourhood operations A single pixel considered in isolation conveys information on the intensity and colour at a single location in an image, but.
CS 376b Introduction to Computer Vision 02 / 27 / 2008 Instructor: Michael Eckmann.
Digital Image Processing
1 Image Filtering Readings: Ch 5: 5.4, 5.5, 5.6,5.7.3, 5.8 (This lecture does not follow the book.) Images by Pawan SinhaPawan Sinha formal terminology.
Digital Image Processing, 2nd ed. www. imageprocessingbook.com © 2001 R. C. Gonzalez & R. E. Woods 1 Objective To provide background material in support.
CS443: Digital Imaging and Multimedia Filters Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Spring 2008 Ahmed Elgammal Dept.
Basic Image Processing January 26, 30 and February 1.
Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr. Marcel Breeuwer Noise and Filtering.
Chapter 3 (cont).  In this section several basic concepts are introduced underlying the use of spatial filters for image processing.  Mainly spatial.
Filtering Course web page: vision.cis.udel.edu/cv March 5, 2003  Lecture 9.
CS 376b Introduction to Computer Vision 02 / 26 / 2008 Instructor: Michael Eckmann.
Spatial Filtering: Basics
Digital Image Processing
Introduction to Image Processing Grass Sky Tree ? ? Sharpening Spatial Filters.
Digital Image Processing Lecture 5: Neighborhood Processing: Spatial Filtering Prof. Charlene Tsai.
Lecture 03 Area Based Image Processing Lecture 03 Area Based Image Processing Mata kuliah: T Computer Vision Tahun: 2010.
Introduction to Image Processing
Convolution and Filtering
Chapter 5: Neighborhood Processing
Course Website: Digital Image Processing Image Enhancement (Spatial Filtering 1)
CSC508 Convolution Operators. CSC508 Convolution Arguably the most fundamental operation of computer vision It’s a neighborhood operator –Similar to the.
Digital Image Processing Lecture 16: Segmentation: Detection of Discontinuities Prof. Charlene Tsai.
Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos VC 15/16 – TP7 Spatial Filters Miguel Tavares Coimbra.
Digital Image Processing Lecture 5: Neighborhood Processing: Spatial Filtering March 9, 2004 Prof. Charlene Tsai.
Sejong Univ. CH3. Area Processes Convolutions Blurring Sharpening Averaging vs. Median Filtering.
Digital Image Processing Lecture 16: Segmentation: Detection of Discontinuities May 2, 2005 Prof. Charlene Tsai.
Machine Vision Edge Detection Techniques ENT 273 Lecture 6 Hema C.R.
Gholamreza Anbarjafari, PhD Video Lecturers on Digital Image Processing Digital Image Processing Spatial Domain Filtering: Part I.
Sharpening Spatial Filters ( high pass)  Previously we have looked at smoothing filters which remove fine detail  Sharpening spatial filters seek to.
Digital Image Processing CSC331
Filters– Chapter 6. Filter Difference between a Filter and a Point Operation is that a Filter utilizes a neighborhood of pixels from the input image to.
Spatial Filtering (Chapter 3) CS474/674 - Prof. Bebis.
Miguel Tavares Coimbra
Basic Principles Photogrammetry V: Image Convolution & Moving Window:
Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof
Digital Image Processing CSC331
Digital Image Processing Lecture 16: Segmentation: Detection of Discontinuities Prof. Charlene Tsai.
Digital Image Processing
Dr. Chang Shu COMP 4900C Winter 2008
Lecture 10 Image sharpening.
Lecture 3 (2.5.07) Image Enhancement in Spatial Domain
Geometric and Point Transforms
9th Lecture - Image Filters
Digital Image Processing
Digital Image Processing
Image Segmentation Image analysis: First step:
Lecture: Image manipulations (2) Filters and kernels
Basic Image Processing
Digital Image Processing Week IV
Interesting article in the March, 2006 issue of Wired magazine
Lecture 2: Image filtering
Image Filtering Readings: Ch 5: 5. 4, 5. 5, 5. 6, , 5
Lecture 7 Spatial filtering.
All about convolution.
IT472 Digital Image Processing
Fundamentals of Spatial Filtering
Presentation transcript:

Basis beeldverwerking (8D040) dr. Andrea Fuster Prof.dr. Bart ter Haar Romeny dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Convolution

Contents 2 Spatial filtering Correlation Convolution Filters: Smoothing filters Sharpening filters Borders Basis beeldverwerking 8D040

Spatial filtering Input image, use a filter to obtain processed image Filter consists of Neighbourhood (rectangular) Mostly odd dimensions Predefined operation Create new pixel value in center of neighbourhood 3 Basis beeldverwerking 8D040

Spatial filtering Filter operation More compact notation - filter 4 Basis beeldverwerking 8D040

Intuition to filtering 5 Basis beeldverwerking 8D040

Move filter over image 6 Basis beeldverwerking 8D040

7

8

9

10 Basis beeldverwerking 8D040

Correlation While moving the filter, at each position Multiply values of overlapping locations Sum all multiplication results 11 Basis beeldverwerking 8D040

Correlation vs. Convolution Discrete Correlation 2D Discrete Convolution 2D 12 Basis beeldverwerking 8D040 - Equivalent to first rotate the filter 180 degrees and correlate-

Correlation vs. Convolution With convolution, first mirror the filter kernel with respect to its origin. With correlation, do not mirror the filter kernel with respect to its origin. 13 convolutioncorrelation Basis beeldverwerking 8D040

Example See blackboard ☺ (or figure 3.30 Gonzalez and Woods) Basis beeldverwerking 8D040 14

Convolution – 1D cont. case Imagine a system with input signal transfer function output signal then 15 Basis beeldverwerking 8D040

Definition 16 output input system transfer function Basis beeldverwerking 8D040

Dirac delta function (unit impulse) Definition Constraint Sifting property Specifically for t=0 17 Basis beeldverwerking 8D040

Convolution Let 18 Basis beeldverwerking 8D040 We saw this already in the discrete case

Properties of convolution Commutative Associative Distributive 19 Basis beeldverwerking 8D040

Convolution is commutative Proof Let Q.E.D. 20 Basis beeldverwerking 8D040

Convolution is associative - 1 Proof 21 Basis beeldverwerking 8D040

Convolution is associative Basis beeldverwerking 8D040

Convolution is associative - 3 Let 23 Basis beeldverwerking 8D040

Convolution is associative - 4 Q.E.D. 24 Basis beeldverwerking 8D040

Convolution is distributive - 1 Proof 25 Basis beeldverwerking 8D040

Convolution is distributive - 2 Q.E.D. 26 Basis beeldverwerking 8D040

Discrete convolution 1D 2D 27 Basis beeldverwerking 8D040

Discrete convolution Formulas take summation from to Filters have a limited size, e.g., 1D 2a + 1 2D (2a + 1, 2b + 1) 28 Basis beeldverwerking 8D040

Filter Kernels 29 Kernel Basis beeldverwerking 8D040

Filters Idea: correlate or convolve image with different filters in order to obtain different results, i.e., processed images Basis beeldverwerking 8D040 30

Smoothing filters Average intensities – result is blurred image, less details Response: (z’s image intensities) 31 Basis beeldverwerking 8D040 … NxN filter

Smoothing filters Note that: −Sum of filter coefficients is 1 (normalized filter) −Correlation = convolution (symmetric filter) −Filter size effect? Basis beeldverwerking 8D040 32

Smoothing filters - example 33 Basis beeldverwerking 8D040 Original 3x3 smoothing filter NxN filter (see figure 3.33 in Gonzalez and Woods!)

Effect of normalized smoothing kernel Basis beeldverwerking 8D normalized non- normalized

Sharpening filters Enhance parts of the image where intensities change rapidly, such as edges Basic derivative filters Measure change of intensity in x or y direction 35 Basis beeldverwerking 8D040

Example 36 Basis beeldverwerking 8D040

Arbitrary angle derivative Given and 37 Basis beeldverwerking 8D040

Arbitrary angle derivative 38 Basis beeldverwerking 8D040

Prewitt gradient kernel Derivative in one direction, smoothing in the perpendicular direction 39 Basis beeldverwerking 8D040

Example 40 Basis beeldverwerking 8D Prewitt Basic derivative

Sobel kernel 41 Basis beeldverwerking 8D040

Example 42 (Thanks to Wikipedia☺)

Derivative filters Note that coefficients in all of the previous filters sum to zero, i.e., zero response in area of constant intensity Also: gradient, Laplacian, … Basis beeldverwerking 8D040 43

Borders Do you see any problems at image borders? Try position (0,0) 44 Basis beeldverwerking 8D040

Border problems How to handle? No border handling Border is not filtered Padding Put values outside image border Cyclic padding Use values from the other side of the image 45 Basis beeldverwerking 8D040

Zero padding 46 Basis beeldverwerking 8D040

Cyclic padding 47 Basis beeldverwerking 8D040

Padding Remember: padding is artificial! The values chosen outside the border influence the outcome image 48 Basis beeldverwerking 8D040

End of part 2 Thanks and see you Wednesday 16! Basis beeldverwerking 8D040 49