Université de Liège Numerical Atomic Orbitals: An efficient basis for Order-N ab-initio simulations Javier Junquera.

Slides:



Advertisements
Similar presentations
How to run with the same pseudos in S IESTA and A BINIT Objectives Run examples with the same pseudos (same decomposition in local part and Kleinman-Bylander.
Advertisements

Basis Sets for Molecular Orbital Calculations
Javier Junquera Exercises on basis set generation Full control on the definition of the basis set functions: the PAO.Basis block.
Javier Junquera Exercises on basis set generation Convergence of the basis set with size.
Javier Junquera Exercises on basis set generation 1. The default basis set.
Javier Junquera Exercises on basis set generation Control of the range: the energy shift.
Javier Junquera How to plot the radial part of the atomic orbitals.
Take-home postcard. Basis set: Atomic orbitals s p d f SIESTA: Strictly localized (zero beyond cut-off radius)
The H 2 molecule without convergence studies Objectives: - the (pseudo)total energy - the bond length r HH Acknowledgment: exercise inspired on the first.
Introduction to PAW method
Systematics for realistic proyects: from quick & dirty to converged calculations José M. Soler and Alberto García.
Pseudopotentials and Basis Sets
Introduction to the Theory of Pseudopotentials Patrick Briddon Materials Modelling Group EECE, University of Newcastle, UK.
DFT – Practice Simple Molecules & Solids [based on Chapters 5 & 2, Sholl & Steckel] Input files Supercells Molecules Solids.
Recap on Basis Sets Pablo Ordejon ICMAB-CSIC. Basis Sets in SIESTA Generated from the solution of the FREE ATOM (with the pseudopotential) Finite range:
Molecular Quantum Mechanics
Chapter 3 Electronic Structures
Quantum Mechanics and Force Fields Hartree-Fock revisited Semi-Empirical Methods Basis sets Post Hartree-Fock Methods Atomic Charges and Multipoles QM.
Transport Calculations with TranSIESTA
Javier Junquera Atomic orbitals of finite range as basis sets.
Norm-conserving pseudopotentials in electronic structure calculations Javier Junquera Alberto García.
Lattice regularized diffusion Monte Carlo
Ab Initio Total-Energy Calculations for Extremely Large Systems: Application to the Takayanagi Reconstruction of Si(111) Phys. Rev. Lett., Vol. 68, Number.
How to optimize automatically the parameters that determine the quality of the basis Javier Junquera Alberto García.
FUNDAMENTALS The quantum-mechanical many-electron problem and Density Functional Theory Emilio Artacho Department of Earth Sciences University of Cambridge.
Javier Junquera Exercises on basis set generation Increasing the angular flexibility: polarization orbitals.
Physics “Advanced Electronic Structure” Pseudopotentials Contents: 1. Plane Wave Representation 2. Solution for Weak Periodic Potential 3. Solution.
Мэдээллийн Технологийн Сургууль Монгол Улсын Их Сургууль Some features of creating GRID structure for simulation of nanotransistors Bolormaa Dalanbayar,
Practical quantum Monte Carlo calculations: QWalk
Norm-conserving pseudopotentials and basis sets in electronic structure calculations Javier Junquera Universidad de Cantabria.
The Nuts and Bolts of First-Principles Simulation Durham, 6th-13th December : DFT Plane Wave Pseudopotential versus Other Approaches CASTEP Developers’
Order(N) methods in QMC Dario Alfè 2007 Summer School on Computational Materials Science Quantum Monte Carlo: From Minerals and Materials.
Javier Junquera Code structure: calculation of matrix elements of H and S. Direct diagonalization José M. Soler = N  N N  1.
R. Martin - Pseudopotentials1 African School on Electronic Structure Methods and Applications Lecture by Richard M. Martin Department of Physics and Materials.
Introduction to run Siesta Javier Junquera Université de Liège.
Systematic convergence for realistic projects Fast versus accurate Daniel Sánchez-Portal Centro de Física de Materiales, Centro Mixto CSIC- UPV/EHU,San.
How to generate a pseudopotential with non-linear core corrections Objectives Check whether the non-linear core-corrections are necessary and how to include.
Development of a full-potential self- consistent NMTO method and code Yoshiro Nohara and Ole Krogh Andersen.
Lecture 12. Basis Set Molecular Quantum Mechanics, Atkins & Friedman (4th ed. 2005), Ch Essentials of Computational Chemistry. Theories and Models,
The eggbox effect: converging the mesh cutoff Objectives - study the convergence of the energy and the forces with respect to the real space grid.
Linear scaling fundamentals and algorithms José M. Soler Universidad Autónoma de Madrid.
TBPW: A Modular Framework for Pedagogical Electronic Structure Codes Todd D. Beaudet, Dyutiman Das, Nichols A. Romero, William D. Mattson, Jeongnim Kim.
Fundamentals of DFT R. Wentzcovitch U of Minnesota VLab Tutorial Hohemberg-Kohn and Kohn-Sham theorems Self-consistency cycle Extensions of DFT.
Density Functional Theory Richard M. Martin University of Illinois
Density Functional Theory A long way in 80 years L. de Broglie – Nature 112, 540 (1923). E. Schrodinger – 1925, …. Pauli exclusion Principle.
Optimization of Numerical Atomic Orbitals
Quantum Monte Carlo on geomaterials Dario Alfè 2007 Summer School on Computational Materials Science Quantum Monte Carlo: From Minerals.
Linear scaling solvers based on Wannier-like functions P. Ordejón Institut de Ciència de Materials de Barcelona (CSIC)
Bandstructures: Real materials. Due my interests & knowledge, we’ll mostly focus on bands in semiconductors. But, much of what we say will be equally valid.
Quantum Mechanics/ Molecular Mechanics (QM/MM) Todd J. Martinez.
Last hour: Electron Spin Triplet electrons “avoid each other”, the WF of the system goes to zero if the two electrons approach each other. Consequence:
Introduction to the SIESTA method SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE University of Illinois at Urbana-Champaign, June 13-23, 2005 Some technicalities.
Materials Process Design and Control Laboratory ON THE DEVELOPMENT OF WEIGHTED MANY- BODY EXPANSIONS USING AB-INITIO CALCULATIONS FOR PREDICTING STABLE.
Lecture 11. Basis Functions & Basis Set
Quantum Chemistry in Molecular Modeling: Our Agenda Postulates, Schrödinger equation & examples (Ch. 2-8) Computational chemistry (Ch. 16) Hydrogen-like.
How to generate a pseudopotential with the semicore in the valence Objectives Check whether semicore states should be explicitly included in the valence.
232 nd ACS meeting in SF, Relativistic parameterization of the SCC-DFTB method Henryk Witek Institute of Molecular Science & Department of Applied.
Start. Technische Universität Dresden Physikalische Chemie Gotthard Seifert Tight-binding Density Functional Theory DFTB an approximate Kohn-Sham DFT.
Restricted and Unrestricted Hartree-Fock method Sudarshan Dhungana Phys790 Seminar (Feb15,2007)
Determination of surface structure of Si-rich SiC(001)(3x2) Results for the two-adlayer asymmetric dimer model (TAADM) are the only ones that agree with.
Advanced methods of molecular dynamics 1.Monte Carlo methods 2.Free energy calculations 3.Ab initio molecular dynamics 4.Quantum molecular dynamics 5.Trajectory.
2/18/2015PHY 752 Spring Lecture 151 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 15: Reading: Chapter 10 in MPM Numerical.
© copyright 2011 William A. Goddard III, all rights reservedCh121a-Goddard-L14 Periodic Boundary Methods and Applications: Ab-initio Quantum Mechanics.
Comp. Mat. Science School Electrons in Materials Density Functional Theory Richard M. Martin Electron density in La 2 CuO 4 - difference from sum.
The Siesta program for electronic structure simulations
Structure of Presentation
Atomic orbitals of finite range
Numerical Modeling for Semiconductor Quantum Dot Molecule Based on the Current Spin Density Functional Theory Jinn-Liang Liu Department of Applied.
Linear scaling solvers based on Wannier-like functions
Second quantization and Green’s functions
Presentation transcript:

Université de Liège Numerical Atomic Orbitals: An efficient basis for Order-N ab-initio simulations Javier Junquera

LINEAR SCALING CPU load ~ N ~ N Early 90’s ~ 100 N (# atoms) 3 ~ N ~ N Early 90’s Real bottleneck for DFT calculations on large systems What does linear scaling means Make an intelligent use of the increasing power of computers Galli and Parrinello (brief review) ~ 100 N (# atoms) G. Galli and M. Parrinello, Phys. Rev Lett. 69, 3547 (1992)

KEY: LOCALITY x2 “Divide and Conquer” Large system W. Yang, Phys. Rev. Lett. 66, 1438 (1992) “Divide and Conquer” x2

In order to get efficiency, two aspects of the basis are important: NUMBER of basis functions per atom RANGE of localization of these functions Some proposals for self-consistent DFT O(N) : ‘blips’ Bessels Finite differences Gaussians Atomic orbitals Very efficient Less straight forward variational convergence Freedom : RADIAL SHAPE

Atomic Orbitals Very efficient Lack of systematic for convergence Main features: Size Range Shape Numerical Atomic Orbitals (NAOs): Numerical solution of the Kohn-Sham Hamiltonian for the isolated pseudoatom with the same approximations (xc, pseudos) as for the condensed system

Depending on the required accuracy and available computational power Size Depending on the required accuracy and available computational power Quick and dirty calculations Highly converged calculations Minimal basis set (single- z; SZ) Complete multiple-z + Polarization Diffuse orbitals

Converging the basis size Single- (minimal or SZ) One single radial function per angular momentum shell occupied in the free –atom Improving the quality Radial flexibilization: Add more than one radial function within the same angular momentum than SZ Multiple- Angular flexibilization: Add shells of different atomic symmetry (different l) Polarization

Examples

How to double the basis set Different schemes to generate Double-  : Quantum Chemistry: Split Valence Slowest decaying (most extended) gaussian (). Nodes: Use excited states of atomic calculations. Orthogonal, asympotically complete but inefficient Only works for tight confinement Chemical hardness: Derivative of the first- respect the atomic charge. SIESTA: extension of the Split Valence to NAO.

Split valence in NAO formalism E. Artacho et al, Phys. Stat. Sol. (b), 215, 809 (1999)

Split valence - Chemical hardness Similar shapes SV: higher efficiency (radius of second- can be restricted to the inner matching radius) E. Anglada et al, submitted to Phys. Rev. B

Polarization orbitals Perturbative polarization Atomic polarization Apply a small electric field to the orbital we want to polarize Solve Schrödinger equation for higher angular momentum E unbound in the free atom  require short cut offs s+p s Si 3d orbitals E. Artacho et al, Phys. Stat. Sol. (b), 215, 809 (1999)

Convergence of the basis set Bulk Si Cohesion curves PW and NAO convergence

Range How to get sparse matrix for O(N) Neglecting interactions below a tolerance or beyond some scope of neighbours  numerical instablilities for high tolerances. Strictly localized atomic orbitals (zero beyond a given cutoff radius, rc)  Accuracy and computational efficiency depend on the range of the atomic orbitals Way to define all the cutoff radii in a balanced way

Energy shift Fireballs BUT: A single parameter for all cutoff radii Convergence vs Energy shift of Bond lengths Bond energies E. Artacho et al. Phys. Stat. Solidi (b) 215, 809 (1999) Fireballs O. F. Sankey & D. J. Niklewski, Phys. Rev. B 40, 3979 (1989) BUT: A different cut-off radius for each orbital

Convergence with the range bulk Si equal s, p orbitals radii J. Soler et al, J. Phys: Condens. Matter, 14, 2745 (2002)

Range and shape dQ : extra charge per atomic specie Confinement: imposed separately per angular momentum shell

Confinement Hard confinement (Sankey et al, PRB 40, 3979 (1989) ) Orbitals: discontinuos derivative at rc Polinomial: n = 2 (Porezag et al, PRB 51, 12947 (95) ) n = 6 (Horsfield, PRB 56, 6594 (97) ) No radius where the orbital is stricly zero Non vanishing at the core region Direct modification of the wf: Bump for large  and small rc New proposal: Flat at the core region Continuos Diverges at rc (J. Junquera et al, Phys. Rev. B, 64, 23511 (01))

Soft confinement (J. Junquera et al, Phys. Rev. B 64, 235111 (01) ) Shape of the optimal 3s orbital of Mg in MgO for different schemes Corresponding optimal confinement potential Better variational basis sets Removes the discontinuity of the derivative

Comparison of confinement schemes Mg and O basis sets variationally optimized for all the schemes 4.10 168 11.90 4.21 152 10.3 PW (100 Ry) Exp 4.12 165 11.82 4.12 163 11.84 4.09 183 11.83 4.11 168 11.86 4.10 167 11.87 4.25 119 6.49 4.17 222 10.89 4.16 228 11.12 4.18 196 11.17 4.15 221 11.26 4.15 226 11.32 Unconfined Sankey Direct modification Porezag Horsfield This work a B Ec (Å) (GPa) (eV) Basis scheme DZP SZ MgO

Procedure Difference in energies involved in your problem? SZ: (Energy shift) Semiquantitative results and general trends DZP: automatically generated (Split Valence and Peturbative polarization) High quality for most of the systems. Good valence: well converged results computational cost ‘Standard’ Variational optimization Rule of thumb in Quantum Chemistry: A basis should always be doubled before being polarized

Convergence of the basis set Bulk Si 4.63 5.28 5.37 5.34 5.33 5.23 4.91 4.84 4.72 Ec (eV) 98.8 96 97 98 89 B (GPa) 5.43 5.41 5.38 5.39 5.42 5.45 5.46 5.52 a (Å) Exp APW PW TZDP TZP DZP SZP TZ DZ SZ SZ = single- DZ= doble-  TZ=triple-  P=Polarized DP=Doble-polarized PW: Converged Plane Waves (50 Ry) APW: Augmented Plane Waves (all electron)

Equivalent PW cutoff (Ecut) to optimal DZP 76 923 13 -quartz 59 284 diamond 22 227 Si 86 45442 O2 34 11296 5 H2 Ecut (Ry) PW # funct. per atom DZP # funct. System For molecules: cubic unit cell 10 Å of side

3.57 165 4.37 - 3.56 172 4.24 3.52 192 4.29 3.60 138 3.50 a Cu B Ec 3.98 9.2 1.22 3.95 8.8 8.7 1.28 4.05 1.44 4.23 6.9 1.11 Na B 3.54 453 8.81 3.53 466 8.90 436 8.96 470 10.13 442 7.37 C B 4.07 188 4.03 191 4.19 190 198 4.08 173 3.81 Au B DZP PW (same ps) (Literature) LAPW Exp System a (Å) B(GPa) Ec(eV)

Transferability: -quartz 4.85 5.38 1.611 140.0 4.88 5.40 - 4.81 5.32 1.605 139.0 4.89 1.60 4.84 5.41 1.617 140.2 4.92 1.614 143.7 a(Å) c(Å) d1Si-O(Å) Si-O-Si(deg) DZP PWe PWd PWc PWb Expa Si basis set optimized in c-Si O basis set optimized in water molecule a Levien et al, Am. Mineral, 65, 920 (1980) b Hamann, Phys. Rev. Lett., 76, 660 (1996) c Sautet (using VASP, with ultrasoft pseudopotential) d Rignanese et al, Phys. Rev. B, 61, 13250 (2000) e Liu et al, Phys. Rev. B, 49, 12528 (1994) (ultrasoft pseudopotential)

0.975 105.0 12.73 0.972 104.5 12.94 0.967 105.1 13.10 0.968 103.9 11.05 0.958 104.5 10.08 Transfer Opt PW LAPW Exp dO-H (Å) H-O-H(deg) Eb(eV) H2O 2.456 6.50 38 2.457 6.72 24 2.456 6.674 23 a (Å) c (Å) E(meV) Graphite 4.13 157 11.81 4.10 167 11.87 4.10 168 11.90 4.21 152 10.30 a (Å) B(GPa) Ec(eV) MgO Properties Basis System

Conclusions Basis sets of Numerical Atomic Orbitals (NAO) have been optimized Performance of NAO basis sets of modest size, as DZP, is very satisfactory, being the errors comparable to the ones due to the DFT or pseudopotential The bases obtained show enough transferability

Our method Linear-scaling DFT based on Implemented in the SIESTA program D. Sanchez-Portal, P. Ordejon, E. Artacho & J. M. Soler Int. J. Quantum Chem. 65, 453 (1997) Linear-scaling DFT based on NAOs (Numerical Atomic Orbitals) P. Ordejon, E. Artacho & J. M. Soler , Phys. Rev. B 53, R10441 (1996) Born-Oppenheimer (relaxations, mol.dynamics) DFT (LDA, GGA) Pseudopotentials (norm conserving, factorised) Numerical atomic orbitals as basis (finite range) Numerical evaluation of matrix elements (3D grid)

How to enlarge the basis set Simple-: One single radial function per angular momentum shell occupied in the free –atom Radial flexibilization: Multiple- Add more than one radial function Pseudopot. eigenfunctions with increasing number of nodes Atomic eigenstates for different ionization states Derivatives of the radial part respect the occupation Split valence Angular flexibilization: Polarization Add shells of higher l Atomic Perturbative

Optimization Procedure Set of parameters ETot = ETot SIMPLEX MINIMIZATION ALGORITHM Isolated atom Kohn-Sham Hamiltonian + Pseudopotential Extra charge Confinement potential Full DFT calculation of the system for which the basis is to be optimized (solid, molecule,...) Basis set

Optimization Procedure (I) Range and shape of the orbitals: defined by a set of parameters: Per atomic species: global dQ Confinement impossed separately per angular momentum shell. The parameters depend on the scheme used to confine: Hard confinement: rc Polinomial confinement: V0 Direct modification of the wave function: rc, a This work: rc, ri, V0 For each z beyond the first, the matching radius rm

Optimization procedure(II) Parameters for an optimization of Si, DZP quality 12 dQ rc-1z ri-1z V0-1z rm-2z This work 9 a –1z Kenny 6 Horsfield Porezag Sankey number param. Extra charge d p s Potential Scheme

Cutting the atomic orbitals p  pressure Penalty for long range orbitals Optimize the enthalpy in the condensed system Just one parameter to define all the cutoff radii: the pressure

Convergence of the basis set Bulk Si Cohesion curves PW and NAO convergence

Tightening the basis confinement in -quartz 4.81 5.34 1.607 1.610 138.2 4.0 5.3 2.8 5.6 6.3 4.2 4.84 5.36 1.607 1.608 139.7 5.0 6.5 4.0 6.0 6.0 6.0 4.69 5.26 1.610 1.610 132.0 4.5 4.5 4.5 4.74 5.29 1.610 1.610 134.0 5.0 5.0 5.0 4.85 5.35 1.607 1.608 140.0 8.0 8.0 8.0 4.85 5.38 1.611 1.612 140.0 a c d1Si-O d1Si-O Si-O-Si (Å) (Å) (Å) (Å) (deg) rcO (a.u.) s p d rcSi (a.u.) Si basis set optimized in c-Si O basis set optimized in water molecule