Beyond ferromagnetic spintronics: antiferromagnetic I-Mn-V semiconductors Tomas Jungwirth Institute of Physics in Prague & University of Nottingham.

Slides:



Advertisements
Similar presentations
Spintronics: How spin can act on charge carriers and vice versa
Advertisements

Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Anandh Subramaniam & Kantesh Balani
Ch.1 Introduction Optoelectronic devices: - devices deal with interaction of electronic and optical processes Solid-state physics: - study of solids, through.
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
Charge Long-range magnetic order Implemented by Coupling Xavier Marti, 1.Metals:
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
Current Nanospin related theory topics in Prague in collaboration with Texas and Warsaw based primarily on Nottingham and Hitachi experimental activities.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Solid State Structure Edward A. Mottel Department of Chemistry Rose-Hulman Institute of Technology.
Spin transport in spin-orbit coupled bands
Making semiconductors magnetic: new materials properties, devices, and future NRI SWAN JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Solid State Electrical Conductivity & Reactivity
Semiconductors n D*n If T>0
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
School of Physics and Astronomy, University of Nottingham, UK
Jairo Sinova (TAMU) NRI e-Workshop Making semiconductors magnetic: A new approach to engineering quantum materials Tomas Jungwirth (TAMU, Institute of.
Magnetism III: Magnetic Ordering
Magnetic Properties of Materials
Theory of ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Tom Foxon, Kevin Edmonds, Andrew.
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Spintronics Tomas Jungwirth University of Nottingham Institute of Physics ASCR, Prague.
Institute of Physics ASCR
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
Basic Electronics By Asst Professor : Dhruba Shankar Ray For B.Sc. Electronics Ist Year 1.
USING SPIN IN (FUTURE) ELECTRONIC DEVICES
Anisotropic magnetoresistance effects in ferromagnetic semiconductor and metal devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon,
Spintronics and magnetic semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge.
Regensburg, Curie point singularity in GaMnAs Institute of Physics of the Academy of Sciences of the Czech Republic Division of Solid State Physics.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Magneto-transport anisotropy phenomena in GaMnAs and beyond Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Kevin Edmonds, Andrew.
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
SPINTRONICS Tomáš Jungwirth Fyzikální ústav AVČR University of Nottingham.
Antiferromagnetic coulpling in spintronics Tomas Jungwirth Univ. of Nottingham, UK Institute of Physics ASCR & Charles Univ., Czech Rep. Hitachi and Univ.
Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,
Spin-orbit coupling induced magneto-resistance effects in ferromagnetic semiconductor structures: TAMR, CBAMR, AMR Tomas Jungwirth University of Nottingham.
Spintronic transistors: magnetic anisotropy and direct charge depletion concepts Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
ELECTRON AND PHONON TRANSPORT The Hall Effect General Classification of Solids Crystal Structures Electron band Structures Phonon Dispersion and Scattering.
Ferromagnetic ordering in (Ga,Mn)As related zincblende semiconductors Tomáš Jungwirth Institute of Physics ASCR František Máca, Jan Mašek, Jan Kučera Josef.
Daresbury Laboratory Ferromagnetism of Transition Metal doped TiN S.C. Lee 1,2, K.R. Lee 1, K.H. Lee 1, Z. Szotek 2, W. Temmerman 2 1 Future Technology.
A spin-valve-like magnetoresistance of an antiferromagnet- based tunnel junction Xavier Marti,
An Alternative Semiconductor Definition!
Spin-orbit coupling and spintronics in ferromagnetic semiconductors (and metals) Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Ferromagnetic semiconductor materials and spintronic transistors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion,
Introduction to Spintronics
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Magnetic Moments in Amorphous Semiconductors Frances Hellman, University of California, Berkeley, DMR This project looks at the effect of magnetic.
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
What are the magnetic heterolayers good for Basic components of modern spintronic devices Conventional electronics has ignored the spin of the electron.
Spintronics in ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds,
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Extraordinary magnetoresistance in GaMnAs ohmic and Coulomb blockade devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Introduction to Semiconductors CSE251. Atomic Theory Consists of Electron, proton, neutron Electron revolve around nucleus in specific orbitals/shells.
Dilute moment ferromagnetic semicinductors for spintronics
Quantum Mechanical Considerations
Presentation transcript:

Beyond ferromagnetic spintronics: antiferromagnetic I-Mn-V semiconductors Tomas Jungwirth Institute of Physics in Prague & University of Nottingham

Kvantová relativistická fyzika Spintronics ← relativistic quantum physics

Kvantová relativistická fyzika Spintronics ← relativistic quantum physics

Kvantová relativistická fyzika Spintronics ← relativistic quantum physics

} } Ultra-relativistic particles with spin (neutrino): Spin-orbit coupling Weaker but also present in electrons in solids

Electron has spin & charge → magnetic moment Collective behavior of spins due to Coulomb interaction → magnetism Provides sensitivity to weak external fields & yields strong electrical signals

Electron has spin & charge → magnetic moment Collective behavior of spins due to Coulomb interaction → magnetism Provides sensitivity to weak external fields & yields strong electrical signals

... and memory Electron has spin & charge → magnetic moment Collective behavior of spins due to Coulomb interaction → magnetism Provides sensitivity to weak external fields & yields strong electrical signals

Lord Kelvin 1857 First spintronic devices Poor scalability to small dimensions & small MR (subtle spin-orbit origin) Current spintrnic devices Interface effect → nanoscale in nature & large MR (robust ferromagnetic origin) Fert, Grünberg et al Bulk AMRTMR (GMR) Spintronic magnetoresistance effects in metals HDD read-head sensors Magnetic RAM

Towards semiconductor spintronics FM semiconductors Ohno et al. Science’98, Dietl et al PRB’00, Jungwirth, MacDonald et al PRB’99 Archetypical material (Ga,Mn)As: favorable FM and spin-orbit coupled bands & semiconductor nano-fabrication → revived interest in spin-orbit phenomena like AMR in nanostructures

Huge (~1000%) AMR-type effects in (Ga,Mn)As nanostructures Wunderlich, Irvine, Jungwirth et al. PRL’06, Schlapps, Weiss et al. PRB’09 Electrical control of spintronics B (T) → rotating m → V G1 V G2 Positive & negative MR Spintronic control of electronics m1m1 → m2m2 → p-type & n-type transistor (m)(m) →

(Ga,Mn)As...FM at huge dopings > 1% (> cm -3 ) → more of a low-density metallic alloy T c below room-T (  190K) Novák, Jungwirth et al. PRL ’08 Limitations of ferromagnetic semiconductor (Ga,Mn)As TcTc Well behaved Itinerant ferromagnet but...

Shick, Jungwirth et al. ‘06 Wunderlich, Jungwirth, Shick et al. ’06 Bernand-Mantel, Fert et al. ‘09 Theory predictions Confirmed by experiments Gao, Tsumbal, Parkin et al. ’07 Park,Wunderlich, Jungwirth et al. 08 AMR-type effects predicted and observed in high-T c FM metal nanostructures cobalt Pt AlO x Pt/Co

spontaneous moment spin-orbit coupling FMAFM Shick, Wunderlich, Jungwirth, et al., PRB‘10 Magnetic and magneto-transport anisotropy effects present in AFMs with spin-orbit equally well as in FMs Maximizing the anisotropy phenomena in metals → spintronics in the AFMs AFM metal MnIr

Much easier to realize strong AFM-SC than FM-SC Can AFMs resolve the problem of high-T SEMICONDUCTOR spintronics? Jungwirth, Novak, et al., preprint ‘10 E Fermi E gap E exchange E exchange competing with E gap in FM-SCs No E exchange competing with E gap in AFM-SCs Strong FM exchange spitting turns the system into metal

II Zn, Cd,.. III Al, Ga,.. IV Si, Ge,.. V (pnictides) N, P, As,.. VI (chalcogenides) O, S, Se, Te,.. Mn (d 5 s 2 ) Fe Eu (f 7 s 2 )Gd IIIII Magnetic (FM & AFM) SCs derived from common 8-valence non-magnetic SCs Si 2 group-IV Si per elementary cell → 8 (sp) valence electrons

II Zn, Cd,.. III Al, Ga,.. IV Si, Ge,.. V (pnictides) N, P, As,.. VI (chalcogenides) O, S, Se, Te,.. IV: no magnetic SC analogue Mn (d 5 s 2 ) Fe Eu (f 7 s 2 )Gd IIIII Magnetic (FM & AFM) SCs derived from common 8-valence non-magnetic SCs

II Zn, Cd,.. III Al, Ga,.. IV Si, Ge,.. V (pnictides) N, P, As,.. VI (chalcogenides) O, S, Se, Te,.. Mn (d 5 s 2 ) Fe Eu (f 7 s 2 )Gd IIIII Si 1 proton transfer IVIII-V IV: no magnetic SC analogue Magnetic (FM & AFM) SCs derived from common 8-valence non-magnetic SCs

II Zn, Cd,.. III Al, Ga,.. IV Si, Ge,.. V (pnictides) N, P, As,.. VI (chalcogenides) O, S, Se, Te,.. Magnetic SCs derived from common 8-valence non-magnetic SCs III-V: FeAs – SC, AFM T N =77K GdN – SC, FM T c =72K (Ga,Mn)As – low-density metal, FM T c <190K Mn (d 5 s 2 ) Fe Eu (f 7 s 2 )Gd IIIII IV: no magnetic SC analogue Lower moment Fe (Gd) less favorable than high moment Mn → II-VI intrinsic magnetic SCs

II Zn, Cd,.. III Al, Ga,.. IV Si, Ge,.. V (pnictides) N, P, As,.. VI (chalcogenides) O, S, Se, Te,.. Magnetic SCs derived from common 8-valence non-magnetic SCs Mn (d 5 s 2 ) Fe Eu (f 7 s 2 )Gd IIIII IV: no magnetic SC analogue III-V: FeAs – SC, AFM T N =77K GdN – SC, FM T c =72K (Ga,Mn)As – low-density metal, FM T c <190K

II Zn, Cd,.. III Al, Ga,.. IV Si, Ge,.. V (pnictides) N, P, As,.. VI (chalcogenides) O, S, Se, Te,.. II-VI: MnO, MnS, MnSe, MnTe - SC, AFM T N ~ K EuO, EuS – SC, FM T c <70K EuSe, EuTe - SC, AFM T N <10K All III-V and II-VI magnetic SCs have low transition-T Mn (d 5 s 2 ) Fe Eu (f 7 s 2 )Gd IIIII IV: no magnetic SC analogue Larger more ionic bonds weaken magnetic interactions in II-V‘s Magnetic (FM & AFM) SCs derived from common 8-valence non-magnetic SCs Can we make high moment (Mn) and smaller lattice (pnictides) intrinsic SC? III-V: FeAs – SC, AFM T N =77K GdN – SC, FM T c =72K (Ga,Mn)As – low-density metal, FM T c <190K

II Zn, Cd,.. III Al, Ga,.. IV Si, Ge,.. V (pnictides) N, P, As,.. VI (chalcogenides) O, S, Se, Te,.. I (AM) Li, Na,.. (TM) Cu, Ag,.. Mn (d 5 s 2 ) Fe Eu (f 7 s 2 )Gd IIIII Magnetic (FM & AFM) SCs derived from common 8-valence non-magnetic SCs

II Zn, Cd,.. III Al, Ga,.. IV Si, Ge,.. V (pnictides) N, P, As,.. VI (chalcogenides) O, S, Se, Te,.. I (AM) Li, Na,.. (TM) Cu, Ag,.. I-II-V: LiMnAs, NaMnAs, LiMnP, LiMnSb... - AFM T N >> room T Mn (d 5 s 2 ) Fe Eu (f 7 s 2 )Gd IIIII Bronger et al., Z. among. allg. Chem. ’86 Magnetic (FM & AFM) SCs derived from common 8-valence non-magnetic SCs

II Zn, Cd,.. III Al, Ga,.. IV Si, Ge,.. V (pnictides) N, P, As,.. VI (chalcogenides) O, S, Se, Te,.. I (AM) Li, Na,.. (TM) Cu, Ag,.. Mn (d 5 s 2 ) Fe Eu (f 7 s 2 )Gd IIIII III-VI-II-V Twin SCs I-Mn-V Bronger et al., Z. among. allg. Chem. ’86 Magnetic (FM & AFM) SCs derived from common 8-valence non-magnetic SCs I-II-V: LiMnAs, NaMnAs, LiMnP, LiMnSb... - AFM T N >> room T

II Zn, Cd,.. III Al, Ga,.. IV Si, Ge,.. V (pnictides) N, P, As,.. VI (chalcogenides) O, S, Se, Te,.. I (AM) Li, Na,.. (TM) Cu, Ag,.. Mn (d 5 s 2 ) Fe Eu (f 7 s 2 )Gd IIIII I-Mn-V No report on electronic structure of AFM I-Mn-V: Are they SCs? No report on MBE growth of group-I compounds: Can they be grown as single-crystal epilayers? Bronger et al., Z. among. allg. Chem. ’86 Magnetic (FM & AFM) SCs derived from common 8-valence non-magnetic SCs I-II-V: LiMnAs, NaMnAs, LiMnP, LiMnSb... - AFM T N >> room T

InAs LiMnAs MBE growth of I-Mn-V: LiMnAs on nearly lattice matched InAs 4.27A 4.28A

[110][-110] LiMnAs MnAs growth drection log(intensity) x (  m) profile (nm) wavelength (nm) LiMnAs InAs cap substrate LiMnAs In situ RHEEDIn situ optical reflectivity Ex situ profile Sharp 2D cubic single-crystal growth... poor growth of control umatched MnAs Fabry-Perot oscillations → semiconductor

log(intensity) X-ray diffraction All LiMnAs crystal peaks observed Fully tensile strained on InAs (0.2% increase of LiMnAs volume) InAs LiMnAs 4.27A 4.28A

Expected 45 o rotation of LiMnAs with respect to the InAs substrate InAs LiMnAs [110] LiMnAs InAs[100] X-ray diffraction

M (10 4 emu) H (T) MnAs Mn S=5/2 LiMnAs energy (meV) I T /I 0 InAs Li:InAs LiMnAs MnAs temperature (K) M rem (10 4 emu) LiMnAs MnAs Ex situ optical transmission Squid magnetization Transparent at least up to InAs band-gap Consistent with in situ Febry-Perot oscillations and compare with non-transparent metal MnAs Magnetization consistent with compensated AFM moments in LiMnAs upto studied 400K Compare with FM MnAs with same amount of Mn

Ab initio theory Stoichiometric I-Mn-V are strong AFMs & intrinsic semiconductors

Magnetic and correlated Mn d-states mixed near band gap → low √  (refractive index), strong and gatable magnetic anisotropy effects LDA

AFM semiconductors for spintronics AFM 1. Electrically gatable magnetic and magneto-transport anisotropy effects Feasible to rotate magnetic easy-axis electrically in high-doped (Ga,Mn)As → should be much more accessible in intrinsic SCs I-Mn-V FM

AFM semiconductors for spintronics 2. Exchange-biasing AFM with embeded conventional semiconductor devices Fixed by exchange- biasing AFM Transistor directly in the AFM layer Opto-electronics directly in the AFM layer Discrete spintronic and transistor elements in current MRAM

FM SCs (GaMnAs) favorable model spintronic systems but low transition T AFM I-Mn-V compounds: - Simplest magnetic counterparts to conventional SCs with high transition T - We showed that they are semiconductors and that the group-I alkali metal compounds can be grown by MBE as high quality single-crystal epilayers - Admixture of magnetic d-states yields unconventional SC properties and theory predicts very strong and gatable spintronic responses Conclusions Prospect for high-T semiconductor spintronics but first sytematic materials research needs to be completed

University of Nottingham Tom Foxon, Richard Campion, Bryan Gallagher, et al. Hitachi & Cavendish Laboratories at Cambridge Jorg Wunderlich, Andrew Irvine et al. Institute of Physics ASCR, Prague Vít Novák, Miroslav Cukr, Jan Mašek, Alexander Shick, František Máca,Petr Kužel, et al. Charles University, Prague Xavi Marti, Petra Horodyská, Václav Holý, Petr Němec, et al. Texas A&M and University of Texas Jairo Sinova, Allan MacDonald, et al.