P. Wittich 1 Peter Wittich University of PA March 1, 2002 From Solar Neutrinos to B Physics: Flavor Oscillations at SNO and CDF.

Slides:



Advertisements
Similar presentations
Solar Neutrino Physics from SNO Aksel Hallin SNOLAB Opening May 14, 2012.
Advertisements

Neutrino oscillations/mixing
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
Gavril Giurgiu, Carnegie Mellon 1 B s Mixing at CDF Seminar at Fermi National Accelerator Laboratory Gavril Giurgiu Carnegie Mellon University August 16,
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Results and Future Challenges of the Sudbury Neutrino Observatory Neil McCauley University of Pennsylvania WIN 2005 : Delphi, Greece. 7 th June 2005.
Evidence of Neutrino Oscillation from SNO Chun Shing Jason Pun Department of Physics The University of Hong Kong Presented at the HKU Neutrino Workshop.
1 Rare Decays of B Hadrons at CDF Matthew Jones October 3, 2005.
ICFP 2005, Taiwan Colin Gay, Yale University B Mixing and Lifetimes from CDF Colin Gay, Yale University for the CDF II Collaboration.
16 May 2002Paul Dauncey - BaBar1 Measurements of CP asymmetries and branching fractions in B 0   +  ,  K +  ,  K + K  Paul Dauncey Imperial College,
FPCP 2002, 05/16-18/2002 p. 1 Richard E. Hughes, The Ohio State UniversityCDF Run II Status Status of CDF and Prospects Flavor Physics and CP Violation.
Queen’s University, Kingston, ON, Canada
The new Silicon detector at RunIIb Tevatron II: the world’s highest energy collider What’s new?  Data will be collected from 5 to 15 fb -1 at  s=1.96.
16 April 2005 APS 2005 Search for exclusive two body decays of B→D s * h at Belle Luminda Kulasiri University of Cincinnati Outline Motivation Results.
Preliminary Measurement of the BF(   → K -  0  ) using the B A B AR Detector Fabrizio Salvatore Royal Holloway University of London for the B A B AR.
Chris Barnes, Imperial CollegeWIN 2005 B mixing at DØ B mixing at DØ WIN 2005 Delphi, Greece Chris Barnes, Imperial College.
B Production and Decay at DØ Brad Abbott University of Oklahoma BEACH 2004 June 28-July 3.
Neutrino Physics - Lecture 4 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Measurement of B (D + →μ + ν μ ) and the Pseudoscalar Decay Constant f D at CLEO István Dankó Rensselaer Polytechnic Institute representing the CLEO Collaboration.
Donatella Lucchesi1 B Physics Review: Part II Donatella Lucchesi INFN and University of Padova RTN Workshop The 3 rd generation as a probe for new physics.
B S Mixing at Tevatron Donatella Lucchesi University and INFN of Padova On behalf of the CDF&D0 Collaborations First Workshop on Theory, Phenomenology.
10/24/2005Zelimir Djurcic-PANIC05-Santa Fe Zelimir Djurcic Physics Department Columbia University Backgrounds in Backgrounds in neutrino appearance signal.
Wolfgang Menges, Queen Mary Measuring |V ub | from Semileptonic B Decays Wolfgang Menges Queen Mary, University of London, UK Institute of Physics: Particle.
手 手 羅 S N O 手 持 火 炬 的 火 炬 的 火 炬 的 手 手 手 俄 羅 羅 R E L O A D E D 手 持 火 炬 的 Results fromthe Salt Phase of the SNO Experiment Results from the Salt Phase of.
NDM03, June Mark Boulay for SNO Mark Boulay For the SNO Collaboration Los Alamos National Laboratory, Los Alamos NM, 87544, USA Present Status and.
Alexander Khanov 25 April 2003 DIS’03, St.Petersburg 1 Recent B Physics results from DØ The B Physics program in D Ø Run II Current analyses – First results.
HARP for MiniBooNE Linda R. Coney Columbia University DPF 2004.
SNO II: Salt Strikes Back Joseph A. Formaggio University of Washington NuFACT’03 Update from the Sudbury Neutrino Observatory.
Latest SNO Results from Salt-Phase Data and Current NCD-Phase Status Melin Huang ● Introduction ● Results of Salt Phase (Phase II) ● Status of NCD Phase.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
Results from Sudbury Neutrino Observatory Huaizhang Deng University of Pennsylvania.
The Sudbury Neutrino Observatory First Results and Implications Nick Jelley (University of Oxford) for the SNO Collaboration October 18th, 2001 CERN.
Karsten M. Heeger Les Houches, June 19, 2001 Sudbury Neutrino Observatory Results from the Sudbury Neutrino Observatory Karsten M. Heeger For the SNO Collaboration.
Cano Ay, Johannes Gutenberg Universität, B mixing and flavor oscillations at DØ Cano Ay University Mainz for the DØ Collaboration 23 may.
Michael Smy UC Irvine Solar and Atmospheric Neutrinos 8 th International Workshop on Neutrino Factories, Superbeams & Betabeams Irvine, California, August.
Gavril Giurgiu, Carnegie Mellon, FCP Nashville B s Mixing at CDF Frontiers in Contemporary Physics Nashville, May Gavril Giurgiu – for CDF.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
Measuring the Neutral Current Event Rate in SNO Using 3 He(n,p)t All Neutron Backgrounds (Estimates) Photodisintegration Background U in D 2 O(20.0 fg/g)160.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
The Sudbury Neutrino Observatory. Neil McCauley University of Pennsylvania NuFact th July 2004.
Data Processing for the Sudbury Neutrino Observatory Aksel Hallin Queen’s, October 2006.
3/13/2005Sergey Burdin Moriond QCD1 Sergey Burdin (Fermilab) XXXXth Moriond QCD 3/13/05 Bs Mixing, Lifetime Difference and Rare Decays at Tevatron.
Search for Sterile Neutrino Oscillations with MiniBooNE
B Masses and Lifetimes at the Tevatron Satoru Uozumi University of Tsukuba Duke University.
Chunhui Chen, University of Pennsylvania 1 Heavy Flavor Production and Cross Sections at the Tevatron Heavy Flavor Production and Cross Sections at the.
Paul Balm - EPS July 17, 2003 Towards CP violation results from DØ Paul Balm, NIKHEF (for the DØ collaboration) EPS meeting July 2003, Aachen This.
Solar Neutrino Observations at the Sudbury Neutrino Observatory (SNO) Alan Poon † Institute for Nuclear and Particle Astrophysics Lawrence Berkeley National.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
1 Heavy Flavor Physics At the Tevatron Cheng-Ju S. Lin (Fermilab ) Aspen Winter Conference Aspen, Colorado 13 February 2006.
MiniBooNE MiniBooNE Motivation LSND Signal Interpreting the LSND Signal MiniBooNE Overview Experimental Setup Neutrino Events in the Detector The Oscillation.
Properties of B c Meson On behalf of DØ Collaboration Dmitri Tsybychev, SUNY at Stony Brook, PANIC05, Santa Fe, New Mexico B c is ground state of bc system.
Mike HildrethEPS/Aachen, July B Physics Results from DØ Mike Hildreth Université de Notre Dame du Lac DØ Collaboration for the DØ Collaboration.
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
Julia Thom, FNALEPS 2003 Aachen Rare Charm and B decays at CDF Julia Thom FNAL EPS 7/18/2003 Tevatron/CDF Experiment Decay Rate Ratios and CP Asymmetries.
Status of MiniBooNE Short Baseline Neutrino Oscillation Experiment Jonathan Link Columbia University International Conference on Flavor Physics October.
4/12/05 -Xiaojian Zhang, 1 UIUC paper review Introduction to Bc Event selection The blind analysis The final result The systematic error.
SNO Review & Comparisons NOW September 2004 Mark Chen Queen’s University & The Canadian Institute for Advanced Research.
Penny Kasper Fermilab Heavy Quarkonium Workshop 21 June Upsilon production DØ Penny Kasper Fermilab (DØ collaboration) 29 June 2006 Heavy Quarkonium.
Solar Neutrino Results from SNO
DØ Beauty Physics in Run II Rick Jesik Imperial College BEACH 2002 V International Conference on Hyperons, Charm and Beauty Hadrons Vancouver, BC, June.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
7/7/06Jason Rieger BEACH 2006 Rare B Decays at the Tevatron Jason Rieger, Indiana University On behalf of the DØ and CDF collaborations BEACH 2006.
Semi-Leptonic B s Mixing at DØ Meghan Anzelc Northwestern University On Behalf of the DØ Collaboration DPF 2006.
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
B s Mixing Results for Semileptonic Decays at CDF Vivek Tiwari Carnegie Mellon University on behalf of the CDF Collaboration.
A.RuizBEACH2000 CP Violation and B-mixing in CDF-II IV International Conference on Hyperons, Charm and Beauty Hadrons June, 27-30, 2000 Valencia,Spain.
Susan Burke, University of Arizona
Presentation transcript:

P. Wittich 1 Peter Wittich University of PA March 1, 2002 From Solar Neutrinos to B Physics: Flavor Oscillations at SNO and CDF

P. Wittich 2 SNOCDF Goals Solar problem Many (B physics is small part) Beam Divine (solar) e Tevatron ppbar Detection Medium Heavy waterSi, ArC 2 H 6, Scintillator, … Channels~10 4 ~10 6 Energies4-15 MeV~ 10 GeV Event rate10 Hz7.6 MHz S/N10 events/dayDepends… PhysicsFlavor oscillations At the base, the same physics! What ties these two experiments together?

P. Wittich 3 Flavor Oscillations Wolfenstein: CKM PDG “standard”: MNS

P. Wittich 4 Solar Neutrino Problem Bahcall Most plausible solution: flavor oscillations in ’s

P. Wittich 5 SNO Detector 1 kT virgin D 2 O ~ 10,000 PMTs on 16.8 m support (LBL!) 7 kT H 2 O, ultrapure Penn Electronics Control Room Urylon liner 2039 m underground 1 in Sudbury, Ontario, in INCO's Creighton Mine # mwe

P. Wittich 6 S. Gil, J. Heise, R.L. Helmer, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng, Y.I. Tserkovnyak, C.E. Waltham University of British Columbia J. Boger, R.L. Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory R.C. Allen, G. Bühler, H.H. Chen* University of California at Irvine I. Blevis, F. Dalnoki-Veress, J. Farine, D.R. Grant, C.K. Hargrove, I. Levine, K. McFarlane, H. Mes, C. Mifflin, A.J. Noble, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, M. Starinsky Carleton University G. Milton, B. Sur Chalk River Laboratories T.C. Andersen, K. Cameron, M.C. Chon, P. Jagam, J. Karn, J. Law, I.T. Lawson, R.W. Ollerhead, J.J. Simpson, N. Tagg, J.-X. Wang Univeristy of Guelph J. Bigu, J.H.M. Cowan, E.D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, S. Luoma, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert,R. Tafirout, C.J. Virtue Laurentian University Y.D. Chan, X. Chen, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, A. Schuelke, A.R. Smith, R.G. Stokstad Lawrence Berkeley National Lab T.J. Bowles, S.J. Brice, M.R. Dragowsky, M.M. Fowler, A. Goldschmidt, A. Hamer, A. Hime, K. Kirch, G.G. Miller, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S. Storey* National Research Council of Canada J.C. Barton, S. Biller, R.A. Black, R.J. Boardman, M.G. Bowler, J. Cameron, B. Cleveland, X. Dai, G. Doucas, J. Dunmore, H. Fergani, A.P. Ferraris, K. Frame, H. Heron, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, N. McCauley, G. McGregor, M. Moorhead, M. Omori, N.W. Tanner, R.K. Taplin, P. Thornewell,M. Thorman, P.T. Trent, D.L. Wark, N. West, J. Wilson University of Oxford E.W. Beier, D.F. Cowen, E.D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J.R. Klein, C.C.M. Kyba, D.S. McDonald, M.S. Neubauer, F.M. Newcomer, S.M. Oser, V.L. Rusu, R.G. Van de Water,R. Van Berg, P. Wittich University of Pennsylvania R. Kouzes, M.M. Lowry Princeton University E.Bonvin, M.G. Boulay, Y. Dai, M. Chen, E.T.H. Clifford,, F.A. Duncan, E.D. Earle,H.C. Evans, G.T. Ewan, R.J. Ford, A.L. Hallin, P.J. Harvey, R. Heaton, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, A.B. MacDonald,W. McLatchie, B.A. Moffat, B.C. Robertson, T.J. Radcliffe, P. Skensved Queen's University Q.R. Ahmad, M.C. Browne, T.V. Bullard, T.H. Burritt, G.A. Cox, P.J. Doe,C.A. Duba, S.R. Elliott, J.V. Germani, A.A. Hamian, R. Hazama, K.M. Heeger, M. Howe, R. MeijerDrees, J.L. Orrell, R.G.H. Robertson,K.K. Schaffer, M.W.E. Smith, T.D. Steiger, J.F. Wilkerson University of Washington *Deceased SNO Collaboration

P. Wittich 7 In matter: Neutrino oscillations Recall (vacuum, two family): L/E determines experimental sensitivity. Typical L/E (L:m, E: MeV) Mixing angle Supernova Solar Atmos Reactor Accl.

P. Wittich 8 SNO reactions -Good measurement of e energy spectrum -Weak directional sensitivity  1-1/3cos  -Measure total 8 B flux from the sun. -Low Statistics -Strong directional sensitivity  All types but enhanced sensitivity to e NC x x  npd ES --  eνeν xx CC - eppd  e  e only  Equal cross section for all types Smoking Gun, model independent Significant with SuperK

P. Wittich 9 SNO Run Sequence Pure D 2 O –Good CC sensitivity Added Salt in D 2 O –Enhanced NC sensitivity Neutral Current Detectors – 3 He proportional counters in the D 2 O Neutron Detection Method Capture on D Capture on Cl Capture on 3 He Event-by-event separation of CC and NC events n  3 He  p  t n  35 Cl  36 Cl   …  e  (E   = 8.6 MeV) n  d  t   …  e  (E  = 6.3 MeV) The Three Phases 1 2 3

P. Wittich 10 NC Salt (BP98) Signals in SNO SNO MC assuming BP98 solar model (no oscillations) Counts in D 2 O/year/hit pmt Hit PMT’s (~E e )

P. Wittich 11 SNO: Handles ES CC Charged current energy response leads to good sensitivity to spectral distortions. ES: e washed out (SK) CC: need lots of statistics (>>1year) NC background to CC spectrum Charged current energy response leads to good sensitivity to spectral distortions. ES: e washed out (SK) CC: need lots of statistics (>>1year) NC background to CC spectrum SNO GOAL:CC/NC ratio is a direct signature for oscillations. ES: SK, SNO In addition:

P. Wittich 12 Neutrino Candidate

P. Wittich 13 SNO Results from Phase 1: Analysis outline Calibration Data reduction Final Fit Physics results: CC flux (CC/ES ratio) More soon: Day/night, NC in D 2 O

P. Wittich 14 Extracting Signals in Phase 1 Three signals, three handles Energy Distribution Radial Distribution Solar Direction Distribution Extended maximum likelihood fits amplitudes

P. Wittich 15 SNO result: CC flux NB: SNO CC flux < SNO ES flux (1.6 ). Also, SNO CC < SK ES (3.3 )  SNP: e   Ratio of  CC to BPB01 = ± Ratio of  CC to BPB01 = ± SNO measurements:  CC ( 8 B) = 1.75 ± 0.07 ± 0.05 (stat) (sys.) (theor)  ES ( 8 B) = 2.39 ± 0.34 (stat) (sys.) (Units of 10 6 /cm 2 /sec)

P. Wittich 16 Implications: SNO Results To Active NeutrinosTo Sterile Neutrinos sterile neutrino solutions strongly disfavored

P. Wittich 17 Solar (SuperK ES, SNO CC) m 2 ~ eV 2 sin 2 2 - LMA  large CC SNO /ES SK 3.3. Neutrino oscillations: evidence roundup Atmospheric (SuperK) m 2 ~ 310 -3 eV 2 sin 2 2 ~ 1 Oscillation to s disfavored at 99%CL Atmospheric (SuperK) m 2 ~ 310 -3 eV 2 sin 2 2 ~ 1 Oscillation to s disfavored at 99%CL LSND m 2 ~ 1 eV 2 Sterile? ( )

P. Wittich 18 What’s next for ’s Minos - sensitive to atmospheric KamLand - sensitive to solar LMA miniBoone - address LSND Minos - sensitive to atmospheric KamLand - sensitive to solar LMA miniBoone - address LSND Further off… CP violation in MNS? –Longer ways away… What about  13 ? Address extra-terrestrial evidence with terrestrial experiments…. Solar neutrinos SNO NC/CC in D2O, day/night Borexino 7 Be

P. Wittich 19 Minos Sensitivity Study  23 (atmospheric nu’s) 10 kT-years exposure Null hypothesis (no osc.) NUMI public pages

P. Wittich 20 Kamland From Kamland-US proposal. Solar LMA in reach Reactor with very long baseline (Solar too…)

P. Wittich 21 MiniBooNE Sensitivity to LSND preliminary In two years, MiniBooNe can exclude the LSND region. Start taking data this year

P. Wittich 22 Borexino Measure 7 Be solar nu’s  Esp. sensitive to SMA Data taking 5/2002 Borexino public pages

P. Wittich 23 Silicon tracker Time-of-Flight Drift chamber Plug calorimeter Muon systems Solenoid Central calorimeter CDF II Substantial upgrades from Run I detector, of relevance for B physics

P. Wittich 24 Oscillation in Quarks CKM describes quark mixing Also sensitive to ‘new physics’ What can you do at CDF (since we have B factories)? Access to other modes, such as B s High  bbar (ppbar)~ 100 b This comes at considerable cost… Disadvantages: –High backgrounds, coupled with low branching fractions, make interesting data hard to trigger on Need an effective B trigger. –CDF D 2 low compared to B factories ( ~11% Run II estimate, rather than ~26% at BaBar) –Better particle ID CDF’s B program complementary

P. Wittich 25 m s : motivation By measuring m s, we can get at V td: s ss s Information about one side of triangle.

P. Wittich 26 How to measure m s Oscillation probability: Determine the oscillation as a function of proper decay time:

P. Wittich 27 How to measure m s, cont’d 1.Find decay into favorite mode 2.Determine meson type at creation 3.Measure proper decay length 4.Count oscillated vs non-oscillated as f(t) Flavor tagging

P. Wittich 28 Sensitivity accurate estimate of decay length crucial For CDF, D 2 small (~5% Run I, ~11% Run II exp.) Need large statistics (and/or good trigger) Effect: ND 2 N fully reconstructed modes:  p  negligible

P. Wittich 29 For fast oscillations: –Proper time resolution –Dilution –Momentum resolution Fully reconstructed modes m s sensitivity: what matters? Run I study for partially reconstructed mode:

P. Wittich 30 In Run II, CDF triggers on displaced tracks in trigger: exploit long B lifetimes. Ideal for enriched hadronic B samples –(cf Run I) It works! CDF II: SVT trigger

P. Wittich 31 SVT, continued Reconstructed with quantities available in the trigger To do: SVX coverage L00 SVT optimization

P. Wittich 32 SVX performance

P. Wittich 33 Flavor Tagging  Determine the initial flavor of the B 0 s Opposite side tags Same side tags - TOF new to RunII SLT: 1.7% JetQ: 3.0% OSK: 2.4% (RunII est) Run I

P. Wittich 34 Tagging w/TOF: SSK TOF: 2 K/ separation for p < 1.6 GeV With COT dE/dx, stat separation K vs ? 1.0% 4.2% with TOF

P. Wittich 35 Some numbers: estimated B s yield Br(B 0 s  D + s  + )= 3 x Br(D + s   + )x Br(K + K - )=1.8% Therefore, the total usable Bf Bf tot ~5.4 x (B 0 s ) ~ 20 b  a Bf tot (B 0 s ) ~ 5 pb -1. Assuming full coverage, perfect reco, …, 5 B s decays to tape per pb -1

P. Wittich 36 Shutdown Delivered To tape Run II so far L ~ 1.0 x sec -1 at beginning of store. FNAL BD: 50pb -1 delivered by Summer 2002 CDF efficiency still needs work… Not a lot of B s to tape yet Jul Oct Jan

P. Wittich 37 Reach for Run II: 50 pb -1 and 2 fb -1 For Run IIa (2 fb -1 ): Expect ~ 10,000 B s decays For Summer 2002: 50 pb -1 Expect ~250 B s on tape  Even this is a bit optimistic … Time well spent tuning detector and analysis…

P. Wittich 38 Current Status: Getting ready B lifetime study: precursor Study of detector resolution (cf. Run I)

P. Wittich 39 CKMMNS MixingOnsetGoal Approximate form Masses~hierarchicalFlat? Phases1 in SMMarjorana? Dirac? CP violationEstablishedUnknown In Summary: MNS vs CKM Lots to do in both fields in the near future…

P. Wittich 40 SNO calibrations Electronics Calibration q, t pedestals, discriminator walks & thresholds, TAC slopes Optical Calibration Pulsed laser ~2ns (337, 365, 386, 420, 500 and 620 nm)  Attenuation, Reflection, Scattering, PMT relative QE Energy Calibration 16 N  6.13 MeV  (also good for pointing) p,T  19.8 MeV ’s (high E calibration point) neutrons  6.25 MeV  (NC response - bkgnd CC) 8 Li   spectrum (CC also good for vertexing) Low Energy Backgrounds Encapsulated Th and U sources

P. Wittich 41 SNO:Data Reduction The problem: S/N ~ 1/10 6. Few handles: shape, time structure of Cerenkov light Instrumental can mimic Radioactivity does mimic Other physics –NC to CC and vice versa –Muons, even at 2km!

P. Wittich 42 Note Neck Tubes Fired Electronic Pickup Instrumental Backgrounds

P. Wittich 43 Signal Distributions  Signal Distributions Radial DistributionSolar Direction Distribution

P. Wittich 44 Error Source Energy scale Energy resolution Non-linearity Vertex shift Vertex resolution Angular resolution High Energy  ’s Low energy background Instrumental background Trigger efficiency Live time Cut acceptance Earth orbit eccentricity 17 O, 18 O Experimental uncertainty Cross-section Solar Model ES error (%) -3.5, +5.4 ±0.3 ±0.4 ±3.3 ±0.4 ± , , ± , +0.7 ± , , +20 CC error (%) -5.2, +6.1 ±0.5 ±3.1 ±0.7 ± , , ± , +0.7 ± , , +20 Signal Extraction  Systematic Uncertainties From varying pdfs by MC vs. calibration differences

P. Wittich 45 What about other physics? Atmospheric ’s: mixing to active flavors established by SuperK at 10. LSND - sterile neutrinos suggested, disfavored by solar and atmospheric data - miniBoone 0test for Majorana masses Current direct mass limits Recent controversial claims of evidence…

P. Wittich 46 hep-ph/ 

P. Wittich 47 Current limits in  plane hep-ph/  K from Kaons m d : B 0 osc V ub, V cb from other B decays Babar, Belle m s : limits only…

P. Wittich 48 Current limits on m s As published by the B Oscillation Working Group.

P. Wittich 49 Current limits on m s LEPBOSC results from CKM workshop 2/2002