TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida.

Slides:



Advertisements
Similar presentations
AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Advertisements

The National Science FoundationThe Kavli Foundation APS April 2008 Meeting - St. Louis, Missouri Results from Cosmic-Ray Experiments Vasiliki Pavlidou.
Status of Top-Down Models for the Origin of Ultra-High Energy Cosmic Rays I. Observation of ultra-high energy cosmic rays before the Pierre Auger Observatory.
UHECR The most energetic universe Shigeru Yoshida Department of Physics Chiba University.
Results from the Telescope Array experiment H. Tokuno Tokyo Tech The Telescope Array Collaboration 1.
GZK Horizons and the Recent Pierre Auger Result on the Anisotropy of Highest-energy Cosmic Ray Sources Chia-Chun Lu Institute of Physics, National Chiao-Tung.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR.
An update on the High Energy End of the Cosmic Ray spectra M. Ave.
Magnetic Field Workshop November 2007 Constraints on Astrophysical Magnetic Fields from UHE Cosmic Rays Roger Clay, University of Adelaide based on work.
Radio detection of UHE neutrinos E. Zas, USC Leeds July 23 rd 2004.
Combined analysis of the spectrum and anisotropies of UHECRs Daniel De Marco Bartol Research Institute University of Delaware.
1 EHE A quest for EHE neutrinos with the IceCube detector proposal for EHE neutrino search in string sample Aya Ishihara for the IceCube EHE pwg.
EHE Neutrino Search with the IceCube Aya Ishihara The University of Wisconsin - Madison for the EHE Verification working group.
What can we learn from the GZK feature? Angela V. Olinto Astronomy & Astrophysics Kavli Institute Cosmol.Phys. Enrico Fermi Institute University of Chicago.
AGASA update M. Teshima ICRR, U of CfCP mini workshop Oct
The IceCube Neutrino Observatory To Explore the EHE Universe Shigeru Yoshida The Chiba University The Baseline Performance.
ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
GZK EHE detection What is the GZK mechanism? EHE  Propagation in the Earth Expected intensities at the IceCube depth Atmospheric  – background Event.
EHE Lepton Propagation in the Earth and Its Implications to the IceCube EHE  Propagation in the Earth EHE  Propagation in the Earth What is the.
2006/6/211 IceCube EHE analysis Our findings and roadmap to analysis Shigeru Yoshida For the EHE working group.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
Ultra high energy cosmic rays: highlights of recent results J. Matthews Pierre Auger Observatory Louisiana State University 19 August August.
The National Science FoundationThe Kavli Foundation Mapping the Ultra-high--energy Cosmic-ray Sky with the Pierre Auger Observatory Vasiliki Pavlidou for.
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
La nascita della astronomia dei raggi cosmici? Indicazioni dall' Osservatorio P. Auger Aurelio F. Grillo Teramo 8/05/08.
Very Large Volume Neutrino Telescope Workshop Athens 13 – 15 October 2009 Recent Results on Ultra High Energy Cosmic Rays Alan Watson University of Leeds.
COSMO/CosPA 2010 Searches for the Highest Energy Neutrino with IceCube Searches for the Highest Energy Neutrino with IceCube Aya Ishihara ( Fellow) (JSPS.
Ultra High Energy Cosmic Rays: Strangers Shrouded In Mystery Scott Fleming High Energy Series 24 Feb
Neutrino Diffuse Fluxes in KM3NeT Rezo Shanidze, Thomas Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Hajime Takami Institute for the Physics and Mathematics of the Universe, the University of Tokyo High Energy Astrophysics KEK, Tsukuba, Nov. 11,
Mar 9, 2005 GZK Neutrinos Theory and Observation D. Seckel, Univ. of Delaware.
Propagation of Ultra-high Energy Cosmic Rays in Local Magnetic Fields Hajime Takami (Univ. of Tokyo) Collaborator: Katsuhiko Sato (Univ. of Tokyo, RESCEU)
Telescope Array Experiment: Status and Prospects Pierre Sokolsky University of Utah.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio Quarks-08.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
1 NATURE OF KNEES AND ANKLE V.S. Berezinsky INFN, Laboratori Nazionali del Gran Sasso.
Ultra-High Energy Neutrino Fluxes Günter Sigl GReCO, Institut d’Astrophysique de Paris, CNRS  Neutrinos: A.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
52° Congresso SAIt 2008 Raffaella Bonino* for the Pierre Auger Collaboration ( * ) IFSI – INFN – Università di Torino.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
Propagation and Composition of Ultra High Energy Cosmic Rays
Neutrinos and Z-bursts Dmitry Semikoz UCLA (Los Angeles) & INR (Moscow)
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio UHECR-08.
March 22, 2005Icecube Collaboration Meeting, LBL How guaranteed are GZK ’s ? How guaranteed are GZK ’s ? Carlos Pena Garay IAS, Princeton ~
Astrophysics of the Highest Energy Cosmic Rays Paul Sommers Cracow, Poland January 10, 2004.
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
AGASA results Anisotropy of EHE CR arrival direction distribution M. Teshima ICRR, U of Tokyo.
High-energy Neutrino Astrophysics with IceCube Neutrino Observatory
Search for Anisotropy with the Pierre Auger Observatory Matthias Leuthold for the Pierre Auger Collaboration EPS Manchester 2007.
Pierre Auger Observatory Present and Future
Cosmogenic Neutrinos challenge the Proton Dip Model
Haoning He(RIKEN/UCLA/PMO)
Neutrinos as probes of ultra-high energy astrophysical phenomena
ultra high energy cosmic rays: theoretical aspects
Predictions of Ultra - High Energy Neutrino fluxes
Shigeru Yoshida and Aya Ishihara
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida

TeV Particle Astrophysics II 2 Outline EHE CR fluxes – What’s going on? Revisit EHE particles models A different approach – Neutrinos! GZK GeV  ?

TeV Particle Astrophysics II 3 EHE CR fluxes Compiled by S.Yoshida for ICRC 2005 Taken from B.M.Connolly et al 2006

TeV Particle Astrophysics II 4

5 Energy estimation AGASA(SD) R core 600~1000m HiRes(FD) R core < R moliere ~70m Even if detector calibration is perfect… FD SD

TeV Particle Astrophysics II 6 Hybrid – SD+FD P.Sommers for Auger collab. (ICRC 2005) FD-SD Correlation exists! ABSOLUTE value of Energy ?? Fluctuation plays a visible role in the end

TeV Particle Astrophysics II 7 Really discrepancy? B.M. Connolly et al PRD 2006 Poor Stats --- N(>100EeV) ~ only 11 events Energy Uncertainty ---  E scale ~ 30% Bayes Factor Test BF using AGASA and Auger Spectrum BF using AGASA and HiRes1 Spectrum data MC from a single hypothesis

TeV Particle Astrophysics II 8 Physics may be responsible EGMF complicates particle trajectories Source distribution may not be isotropic Fluctuation in the spectra and intensities of the source - “cosmic variance”

TeV Particle Astrophysics II 9 Propagation in EGMF Sigl, Lemoine, Biermann, Astropart.Phys Delay time [yr] Energy [EeV] 0.3  G pancake E -1/3 E -1 (bohm diffusion) E -2 (rectilinear)

TeV Particle Astrophysics II 10 Propagation in EGMF Delay time [yr] Energy [EeV] More detailed EGMF model following Large Scale Structure Sigl, Miniati, En  elin, PRD 2004

TeV Particle Astrophysics II 11 Spectrum fluctuated! B 100 nG Sigl, Lemoine, Biermann, Astropart.Phys. 1999

TeV Particle Astrophysics II 12 Spectrum fluctuated! B 300 nG! More pronounced GZK feature Sigl, Lemoine, Biermann, Astropart.Phys. 1999

TeV Particle Astrophysics II 13 Astrophysical sources in Large Scale Structures Sigl, Miniati, En  elin, PRD 2004 EGMF Baryon Density = Source Density uG nG Observer 20Mpc

TeV Particle Astrophysics II 14 Astrophysical sources in Large Scale Structures Sigl, Miniati, En  elin, PRD 2004 EHE Sky map

TeV Particle Astrophysics II 15 Astrophysical sources in Large Scale Structures With EGMF ~ uG Without EGMF Armengaud, Sigl, Miniati,PRD 2005 Intrinsic fluctuation due to source intensities primary spectrum source density observer’s location in LSS

TeV Particle Astrophysics II 16 “Favored” Scenario Source density 2.4x10 -5 Mpc -3 Need LSS? Yes Observer’s location Void Mean spectral index -2.4 B at the observer 8.2 pG So Many Unknown Parameters to fit poor data…. But allows many OTHER possibilities…. 

TeV Particle Astrophysics II 17 Top Down model never dies Beyond the Standard Model Top-Down neutrinos decays/interaction of massive particles (topological defects, SUSY, micro black hole, …) The main energy range: E ~ GeV X

TeV Particle Astrophysics II 18 Top Down model never dies  suppressed by (unknown) URB Cut-off feature Sigl, Lee, Bhattacharjee, Yoshida, PRD 1999

TeV Particle Astrophysics II 19 Top Down model never dies Sigl, Lee, Bhattacharjee, Yoshida, PRD 1999 A bunch of Recycling  in 100 GeV region

TeV Particle Astrophysics II 20 (EHE) Photons in EBL EM cascades lead to the diffuse  -ray BG in the GeV range URB CMB IR/O Transparent Energy Conservation

TeV Particle Astrophysics II 21 EHE astrophysics “Everything is transient” “Nothing is certain”  Unknown EGMF strength  Unknown EGMF configuration  Unknown location of us relative to EGMF halo  Unknown source spectra  Unknown source distribution  Unknown source intensity  Large energy scale uncertainty  Extremely low flux  May or may not have a GZK cutoff

TeV Particle Astrophysics II 22 Neutrinos – The Last Crusader Forget about EGMF stuff Propagate cosmological distances – no local effects EHE  -rays ? - It depends on unknown URB!

TeV Particle Astrophysics II 23 GZK The standard scenario The standard scenario EHE cosmic-ray induced neutrinos The main energy range: E ~ GeV EHE-CR  e   

TeV Particle Astrophysics II 24 GZK Yoshida, Teshima, Prog.Theo.Phys. 1993

TeV Particle Astrophysics II 25 GZK – it’s robust Compiled by A. Ishihara Yoshida, Teshima Engel, Seckel, Stanev 2001

TeV Particle Astrophysics II 26 GZK – parameter dependences Yoshida, Teshima, Prog.Theo.Phys Kalashev et al PRD 2002 E max, E -   J(E>10 EeV) m, Zmax  J(E<1EeV)

TeV Particle Astrophysics II 27 GZK – Strong Evolution case Yoshida, Dai, Jui, Sommers ApJ 1997 Hard primary proton spectrum + strong evolution of sources Unlikely case, but Flux >> Waxman.Bahcall GeV diffuse  OK with EGRAT Reachable even by present detectors.

TeV Particle Astrophysics II 28 UHE/EHE fluxes GZK (hard, high Emax) - Kalashev et al 2002 GZK (strong evolution) - ibid GZK (standard) - Yoshida Teshima 1993 TD - Sigl et al 1999 Zburst – Yoshida et al 1998

TeV Particle Astrophysics II 29 ANITA constraints Barwick et al PRL 2006 (projected) Bound from the 2003 flight. Ruled out Z-burst

TeV Particle Astrophysics II 30 IceCube constraints Yoshida, Ishibashi, Miyamoto, PRD 2004 ~5 yr constraints Look for downgoing or horizontal events.

TeV Particle Astrophysics II 31 IceCube EHE 100 TeV 9 EeV

TeV Particle Astrophysics II 32 IceCube EHE IceCube Preliminary GZK  0.35 events/year GZK  0.31 events/year Atmospheric  events/year GZK  GZK  Atmospheric  GZK  GZK  Atmospheric  A.Ishihara, S.Yoshida for the IceCube collaboration

TeV Particle Astrophysics II 33 EHE Neutrinos + 100GeV  -ray channel have its own drawback low statistics, poor pointing resolutions…  channel compensates Arrival direction Local UHECR source  VHE  (Ferrigno,Blasi,Marco, Astro.Phys.2005) (Gabici, Aharonian, PRL 2006)

TeV Particle Astrophysics II 34 (EHE) Photons in EBL URB CMB IR/O Transparent Energy Conservation Cooling down to 100 GeV

TeV Particle Astrophysics II 35 A “point” source contribution to the diffuse flux Diffuse FluxFlux from A source Source density Zmax ~4 m~4 Z~2 (cosmological distances) “R -2 ”

TeV Particle Astrophysics II 36 ICTs for point sources? Taken from W. Hofman 2006  = 2x10 -7 Mpc -3  = 2x10 -9 Mpc -3 Note: AGASA clusters   local ~10 -4 ~10 -5 Too few as UHRCR sources

TeV Particle Astrophysics II 37 A “multi-particle” campaign I would like a Munich beer.. Helles ? What are the right ascension/ declination?

TeV Particle Astrophysics II 38 Summary  EHE signals are Extremely High Epicurean money/time (your career) consuming to explore  Hard to interpret data. Large Scale Structure?  ~ Mpc -3 ?  Neutrino may be a rescue Top Down model produces easily-reachable signals. GZK detection is a probe to cosmological sources. -- Anita, Auger (>10EeV) IceCube (100 PeV-EeV)  Search for 100 GeV  ’s with ICTs is worth to try