Capillary electrophoresis
偵測器 注入端 白金電 極 高電壓 (KV) 電解質緩衝溶液 資料處 理 系統 偵檢端 毛細管 毛細管電泳 (Capillary Electrophoresis-CE) 儀器結構簡圖 毛細管 I.D m
Electrophoretic migration Z i : charge # of component i e 0 : elemental charge [ 1.602× C ] E=V/L ( V : applied voltage ; L : length ) r i : stokes radius of i component η : viscosity of the elution [Pa · S] V i 0 : migration velocity of i component (1) (2)
μ i 0 : electrophoretic mobility μ i 0 和 (q, η, r i ) 有關 Electroosmotic flow (EOF) (3) (4) μ eo : electroosmotic mobility (cm 2 /Vs) (5) (6) ξ : zeta potential (V) 和 pH 值, ionic strength 有關 η : viscosity of double layer ~ η (bulk)
= r /
+ - n EOF -+ + n - Net 毛細管電泳的向量圖
Effective Mobility and Apparent Mobility
if no EOF (7) (8) (9) (10)
Efficiency (11) (12) (13) (14) (15)
(16) (17) (18) 對某一 analyte, μ 和 D 是 constant V 固定 D 愈小 N 愈大 對大分子分離有利
Resolution (19) (20) (21) (22) :平均距離 (cm) :平均速度
代入 (24) EOF 存在 (23) (24) (25) (26) EOF 和 electrophoretic 反方向則 μ eo ↑ R s ↑ Best Resolution 分離時間很長
Reversal of EOF Using a Cationic Surfactant
(22) 式 R s =column eff. × selectivity factor selectivity →separation factorαin chromatography Buffer composition Complex formation 1. Borate complexation 2. ion pairing 3. inclusion complex 4. metal complexation Organic modifier 1.After the polarity & viscosity of the mobile phase EOF & electrophoretic mobility changed 2. 增加 solubility of analyte 3. reduce zeta potential
Micellar Electrokinetic Chromatography fraction of analyte in aqueous phase fraction of analyte in micelle migration velocity (V s ) : t R, t 0, t mc : migration time of analyte, aqueous phase, and micelle k’ : capacity factor n mc : no. of analyte molecules incorporated into the micelle n aq : no. of analyte molecules in aqueous phase (1) (2) (3) (6) (5) (7) (4)
(5)(6)(7) 代入 (4) (micelle 停在 capillary) << t 0 =∞ EOF is completely suppressed, in MEKC EOF is not essential. 這時分析物向正 (+) 移動, k’ 值愈大移動速率愈快 (8) (10) (9)
Resolution t mc →∞ 兩式相等 t mc →∞ 固定相 (11)
Effect of the capacity factor t 0 /t mc =0 t mc =∞ conventional chromatography large capacitybetter resolution lead to in MEKC large k’ unfavor (11) 式最後一項 →0 optimum k’ 和 t 0 /t mc 有關 將 (12) 式微分 (12) (13)
capacity factor k : distribution coefficient V mc,V aq : volumes of micelle and aqueous phases : specific volume of micelle when << 1 k’ vs conc. of surfactant C sf linear if k is constant 可調整 C sf 來調整 k‘ RP-HPLC 調整 phase ratio 對 k‘ 改變小 (15) (16) (14) (17) (V mc <<V aq )
Effect of EOF on the resolution < 1 >> 愈小 R s 愈大 separation factor ← micelle (stationary phase in RP-HPLC) aqueous (mobile phase in RP-HPLC) type of surfactants : hydrophilic (ionic group) hydrophobic (from 11 式 )
Chiral Capillary Electrophoresis (CCE)
Separation Mode: Capillary Gel Electrophoresis (CGE)
CGE: Protein Size Separation Using SDS Linear Polymer Solutions
Separation Mode: Capillary Isoelectric Focusing (CIEF)
Detection: Direct UV Detection
Detection: Indirect UV Detection
Peak profile with long injection time (A) No stacking; (B) stacking.
Injection time:200, 500, 700, 900 sec with SRMM stacking
CEC = CE+ HPLC Electroosmotic flow(EOF) + HPLC stationary CE separation efficiency + HPLC selectivity P.S. CE: Capillary electrophoresis HPLC: High performance liquid chromatography What is Capillary electrochromatography (CEC) ?
EOFV EOF = E = r / E:electrical field strength :zeta potential Pressure-driven flow = d p :particle diameter Driving force of CEC and HPLC
a.LC stationary phase- packed column b.Open-tubular column c. Countinuous-bed or monolithic column Cross-section view of different types of CEC column
Capillary Functional group coated surface Side view of open-tubular CEC column
Advantages and disadvantages of open-tubular column Advantages: No bubble formation , easy to operate Disadvantages: 1. Low phase ratio 2. On-column UV detection is difficult – optical path-length is short and difficult to align 3. The synthesis of matrix with homogeneous is not easy
Sol-Gel that is made from solution-gelation process: Hydrolysis of TMOS under acidic or basic condition yield SiO 2 in the form of glass-like material 1.Hydrolysis: 2.Condensation: 3.Polymerization: What is Sol-Gel?
DI.water180 μl + 0.1M HCl 15 μl +500μl TMOS 冰震 30 分鐘 冰埋 5 小時 加入 TMSPTMA 340 μl 震盪 30 秒 PTMAFS sol-gel Preparation of PTMAFS Sol-Gel
溶膠凝膠塗佈合成步驟示意圖 (a) 合成步驟。 (a)
溶膠凝膠塗佈毛細管內塗佈結果示意圖
Electron micrographs of a PTMAFS coating inside a fused-silica capillary A:10 s coating, flushing with water 30 s, aging in water B:10 s coating, flushing with water 4 min, aging in water
Anion-exchange behavior of PTMAFS coated capillary Migration time (min) Absorbance Unit. Running buffer 20 mM phosphate pH 3.0; Analyte: terephthalic acid 60 mM co-anion a:citrate b:sulfate c: nitrate d:chloride
CEC separation Mechanism
a.a. b c d 燒結儀器裝置. a. 矽酸鹽溶液 b. 蠕動幫浦 c. 燒結器 d. 電源供應器
a. Ni-Cr wire Closed view of a Ni-Cr wire heating head
Experimental conditions: capillary, 34.5 cm in length,75um i.d., 375um o.d..Suspension of ODS-2 particles in 75/25 IPA/MeOH at concentration of 0.2g/mL, packing pressure with 5000psi. Preparation a packed CEC column
75 μm Picture of a frit by optical microscope with digital camera
Compound Structure molecular weight Testosterone Methyltestosterone Progesterone Testosterone propionate Steroids structures used for C 18 packed CEC separation.
Effect of MeCN concentration on EOF Mobile phase: 10 mM Tris at pH 8.0. Column: 35 x 75 m I.D. Bed length: 27.5 cm. Injection: 5kV with 20s. Applied voltage: 20 kV. Detection: 254 nm.
Volume fraction of MeCN effect on the migration of cholesterols. : 17-methyltestosterone, : testosterone propionate.
Column: 35cm×75um I.d. Bed length: 27.5cm. Mobile phase: MeCN / 10mM Tris pH 8.0. Sample: 15 mg/L. Applied voltage: 20kV. Injection: 5kV. Detection: 254nm. 1. Testosterone; Methyltestosterone; 3. Progesterone; 4:Testosterone propionat. Chromatographic separation of 4 steroids.
Online pre-concentration in CEC Solid phase micro extraction (SPME) concept for the stacking of analyte in CEC column during sample injection.
BGS + - SB + - BB SPME Procedure CEC Separation BGS + - SB SSM S1 S2 S3 SPME sample injection
Compound Structure molecular weight 17-Methyltestosterone Testosterone Progesterone Steroids structures used for pre-concentration of SPME-CEC.
Effect of MeCN conc. in the sample solution on the electrochromatograms Samples: 1, 17-Methyltestosterone; 2, Testosterone; 3, Propionate. (A), V MeCN : V H2O =80/20; (B), V MeCN : V H2O =20/80..
Effect of injection time on peak width at half-height ( ) and peak height ( ) of 17-Methyltestosterone. Experiment conditions: sample solution, V MeCN : V H2O =40/60; other conditions were the same as shown in Fig. 8.3.
Electrochromatogram of neutral compounds with SPME-CEC technique. Experimental conditions: mobile phase, V MeCN : V H2O =80/20, 10mM Tris, pH 8.0. sample solution,V MeCN : V H2O =20/80; injections (A) 5kV, 1-s, (B) 5kV, 600-s; Sample concentration: (A) 10mg/L; (B) 0.3mg/L. DL: ~15ppb
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b) fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene PAHs structure used for pre-concentration of SPME-CEC.
Effect of MeCN conc. in the sample solution on the electrochromatograms of PAHs Samples: 1, Naphthalene; 2, Acenaphthene; 3, Pyrene. Sample solution (A), V MeCN : V H2O =100/0; (B), V MeCN : V H2O =40/60.
Effect of injection time on the peak width at half-height ( ) and peak height ( ) of pyrene. sample solution, V MeCN : V H2O =40/60.
Electrochromatogram of PAHs with SPME-CEC technique. Mobile phase, V MeCN : V H2O =80/20, 10mM Tris, pH 8.0. Samples: 16 PAHs mixture; sample solution, (A) V MeCN : V H2O =100/0, (B) V MeCN : V H2O =40/60; injections (A) 5kV, 6-s, (B) 5kV, 600-s.
D.L. enhancement of 16 PAHs mixture by SPME-CEC Analytes original concentration D.L Naphthalene 5.0 g/mL 9.8 ng/mL a Acenaphthylene 5.0 g/mL 13.4 ng/mL a Acenaphthene 10.0 g/mL 45.9 ng/mL b Fluorene 1.0 g/mL 6.7 ng/mL b Phenanthrene 0.4 g/mL 1.0 ng/mL a Anthracene 0.2 g/mL 1.2 ng/mL a Fluoranthene 0.5 g/mL 5.1 ng/mL a Pyrene 1.0 g/mL 8.4 ng/mL a Benzo(a)anthracene 0.5 g/mL 5.3 ng/mL a Chrysene 0.5 g/mL 3.9 ng/mL a Benzo(b)fluorine 0.2 g/mL 7.1 ng/mL a Benzo(k)fluorine 0.2 g/mL 9.9 ng/mL a Benzo(a)pyrene 0.5 g/mL 20.7 ng/mL a Dibenzo(a,h)anthracene 2.0 g/mL ng/mL a Benzo(g,h,i)perylene 0.8 g/mL 68.5 ng/mL a Indeno(1,2,3-cd)pyrene 0.5 g/mL 28.9 ng/mL a a.Column: Vydac 201 TP-51 packed CEC, injection 5kV 600-s. b.b. Column: ODS-2 packed CEC, injection 5kV 500-s.
Enantiomeric resolution of -blockers by CEC using macro cyclic antibiotic stationary phases
對掌性異構物 (enantiomers): 具有相同的物性及化性。 (乳酸)
1.Dalgiesh 1952 three-point interaction 2. transient diastereomeric complex
Structure of Marcrocyclic Glycopeptides
Teicoplanin Structure
Alprenolol Atenolol Fenoterol Metoprolol Pindolol Propranolol Sotalol
Reversed-phase mode
Buffer types effect on the enantiomeric resolution of Alprenolol with Teicoplanin CSP. Mobile phase: MeCN/buffer (pH4), 85 : 15, v/v, 15kV, 15 ℃, 335mm 75 m i.d. x 25cm, 2-s injection at 10kV, 10 bar, and detection at 200nm. Buffers: ammonium nitrate,10mM; ammonium acetate, 20mM; TEAA 1%.
Buffer types affect on the electrochromatograms of enantiomeric separation of alprenolol on the Teicoplanin CSP. (A)10mM ammonium nitrate (B) 20mMammonium acetate (C) 1%TEAA.
pH affect on the enantiomeric resolution of alprenolol with Teicoplanin CSP. Mobile phase : MeCN/1% TEAA, 85 : 15, v/v, 15kV, 15 ℃
Buffer concentration affect on the enantiomeric resolution ( ) and theoretical plates( ) of alprenolol with Teicoplanin CSP. Mobile phase : MeCN/TEAA (pH4), 85 : 15, v/v, 15kV, 15 ℃.
MeCN content in the aqueous TEAA buffer on the resolution ( ) and efficiency ()of Alprenolol.
Relationship of linear velocity with field strength ( ) and Its effect on plate height ( ).
Simultaneous enantiomeric separation of -blockers drugs with eicoplanin CSP in reversed-phase CEC. Samples: 1, alprenolol; 2, Propranolol; 3, Pindolol; 4, Atenolol.
Polar organic mode General composition of eluent: MeOH / MeCN / TEA / HOAc X / 100-X / base / acid 1: MeOH / MeCN Ratio 2: TEA / HOAc Ratio 3. Total TEA / HOAc concentration
Effect pf acid-base content in the non-aqueous media on the resolution ()and efficiency ( )of Alprenolol with Vancomycin CSP in polar organic chiral CEC. Conditions: MeOH/MeCN, (25/75, v/v), 15kV, 15 ℃, 335mm 75 m i.d. (L d 250mm), 2-s injection at 10kV, 10 bar, and detection at 200nm.
MeCN content in the polar organic mobile effect on the migration behavior of alprenolol first-eluted enantiomer. Conditions: TEA/HOAc, (0.1/0.1, v/v)
MeCN content in polar organic phase effect on the resolution ( ) and theoretical plates () of first-eluted alprenolol enantiomer. Conditions: TEA/HOAc, (0.1/0.1, v/v)
Comparison CEC enantiomeric separation of alprenolol by reversed-phase mode and polar organic mode in Teicoplanin CSP. (A). MeCN/TEAA (pH4) 1%, 85 : 15, v/v, 15kV, 15 ℃ (B). MeOH/MeCN/TEA/HOAc(75/25/0.15/0.3, v/v/v/v), 15kV, 15 ℃.
Reversed-phase mode CEC chiral separations of -Blocker enantiomers with Teicoplanin CSP Racematet R 1 mint R 2 minN 1 plates/mN 2 plates/m R S Alprenolol , , Pindolol , , Atenolol , , Fenoterol ,500 51, Metopropol , , Propranolol , , Sotalol , MeOH/TEAA (pH4) 1%, 85/15, v/v, 15kV, 15 ℃
Reversed-phase mode CEC chiral separations of -blocker enantiomers with Vancomycin CSP Racematet R 1 mint R 2 minN 1 plates/mN 2 plates/mR S Alprenolol ,00099, Pindolol ,00065, Atenolol ,90012, Fenoterol ,10025, Metopropol ,90038, Propranolol ,550042, Sotalol ,00069, MeOH/TEAA (pH4) 1%, 85/15, v/v, 15kV, 15 ℃
DOPAMethylDOPA 3-O-MethylDOPA ( L-dopa—Parkinson Disease)( L-methyldopa— High blood pressure ) ( DOPA’s metabolite)
Lab-on-a-chip or CE on chip
Photograph of the microdevice with attached transfer capillary
-TAS concept: Miniture-Total Chemical Analysis system.
Thank you for your time