Interactive session: Metadata Maia Ennok Head of Data Warehouse Service Statistics Estonia 24.05.2012.

Slides:



Advertisements
Similar presentations
Ma.
Advertisements

 When a child is Tormented Threatened Harassed Humiliated Embarrassed Or targeted by a child, preteen or teen using the Internet or mobile phones.
Structural Equation Modeling Mgmt 290 Lecture 6 – LISREL Nov 2, 2009.
T h e K i n e t i c T h e o r y. E x p l a i n s t h e e f f e c t s o f t e m p e r a t u r e a n d p r e s s u r e o n m a t t e r.
ניתוח מערכות מידע 1 Using Use Case Diagrams n Use case diagrams are used to visualize, specify, construct, and document the (intended) behavior of the.
Click on each of us to hear our sounds.
Cryptographic Algorithms Course information General Concepts Introductory examples Terminology Classical cryptography Cryptanalysis.
Data Management: Documentation & Metadata Types of Documentation.
Metadata for the S-DWH ‒ an overview Lars-Göran Lundell Statistics Sweden.
S-DWH Architecture (Recap):
Phonics: Chunk Challenge Picture Support Individual Slides.
United Nations Economic Commission for Europe Statistical Division Applying the GSBPM to Business Register Management Steven Vale UNECE
Phonics: Chunk Challenge Picture Support Grouped Slides.
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
LANE BENTON LINN DESCHUTES CROOK LINCOLN *MARION River Road Long Tom Fern Ridge McKenzie River Alpine Alsea Covered Bridge 2 Rivers Pioneer.
What is a Budget? A Budget is a “realistic” plan expressed in dollar amounts that acts as a road map to carry out the Chapter’s objectives, strategies,
Metadata management and statistical business process at Statistics Estonia Work Session on Statistical Metadata (Geneva, Switzerland 8-10 May 2013) Kaja.
Interactive session: Mapping the BPM-Notation on a SDWH layered architecture Discussion on Vision in sub groups.
Slide 1 Eurostat ESSnet Workshop – session 5 The ESS VIP "Data Warehouses" August Götzfried Head of Unit B5 November 2012.
Sound Pack a t s m b f c r h j n p l.
ESS-net DWH ESSnet DWH - Metadata in the S-DWH Harry Goossens – Statistics Netherlands Head Data Service Centre / ESSnet Coordinator
Explaining the statistical data warehouse (S-DWH)
Ay says “ay” as in h a y. ai says “ai” as in r a i n.
Case Study Statistics Netherlands Max Booleman Statistics Netherlands METIS, 2010.
s p d (n-1) f (n-2) 6767 Periodic Patterns 1s1s1s1s 2s2s2s2s 3s3s3s3s 4s4s4s4s 5s5s5s5s 6s6s6s6s 7s7s7s7s 3d3d3d3d 4d4d4d4d 5d5d5d5d 6d6d6d6d 1s1s1s1s.
Developing Statistical Information Systems and XML Information Technologies - Possibilities and Practicable Solutions Geneva,
Measurement Data Workspace and Archive: Current State and Next Steps GEC15 Oct 2012 Giridhar Manepalli Corporation for National Research Initiatives
1 © The Delos Partnership 2006 Sanofi Aventis What is required to develop “Process Thinking”
Pilot Census in Poland Some Quality Aspects Geneva, 7-9 July 2010 Janusz Dygaszewicz Central Statistical Office POLAND.
ILO Department of Statistics Edgardo Greising
Data warehouse approach to statistical data management and the prospect of its use for scanner data Antonio Laureti Palma Workshop scanner.
Open GSBPM compliant data processing system in Statistics Estonia (VAIS) 2011 MSIS Conference Maia Ennok Head of Data Warehouse Service Data Processing.
Metadata Framework for a Statistical Data Warehouse
Phonics: Chunk Challenge All. b c d f g h j.
©2006 Avanex, Inc. All rights reserved. CONFIDENTIALITY NOTICE: The information contained in this presentation is Avanex confidential information. Any.
ESS-net DWH ESSnet on microdata linking and data warehousing in statistical production.
Web Application Design. Data –What data is available? –How do we store it or how is it stored in the DB? Schema Data types Etc. –Where is the data?
Harry Goossens Centre of Competence on Data Warehousing.
S-DWH Approach to statistical data management: The practice case of the SBS production process in ISTAT Francesco Altarocca, ISTAT Diego Bellisai, ISTAT.
Best practice case Finland / Estonia 22th. of September 2011 Maia Ennok.
Describe a layered S-DWH Technology Architecture Information Systems Architecture Business Architecture.
ESSnet project "Automated data collection and reporting in accommodation statistics" Objectives, achievements and results Köln,
How official statistics is produced Alan Vask
Ki ng Fa hd U ni ve rsi ty of Pe tro leu m & M ine ral s M ech ani cal En gin eer ing Dy na mi cs M E 20 1 BYBY Dr. M ey ass ar N. Al - Ha dd ad Dynamics.
PHONICS Repeat each sound. Blend the sounds. Read each word.
ma mu mi mo me pe pi pa pu po si sa so.
Prepare Microsoft Exam MCSE: Server Infrastructure.
Production of International Trade Statistics in Eurostat Ján Plánovský Eurostat Prague, 15 September 2009.
Share / Bookmark Site Search Home » State Maps » Ohio Maps » Ohio Lakes and Rivers Ohio Lakes, Rivers and Water Resources Ohio Stream and River Levels.
Databases and DBMSs Todd S. Bacastow January 2005.
Towards connecting geospatial information and statistical standards in statistical production: two cases from Statistics Finland Workshop on Integrating.
(COmmon Reference Environment)
Session 8 Data Processing Estonian case study
“The infrastructure for the SBS-Frame production in ISTAT”
Web-Based Molecular Level Inquiry Laboratory Activities Michael Abraham John Gelder University.
Emission of Energy by Atoms and Electron Configurations
W H Y C A N A D A IM M IG R A T IO N Presented by CanApprove.
W H Y C A N A D A IM M IG R A T IO N Presented by CanApprove.
S-DWH layered architecture – Statiscs Finland
Periodic Table of the Elements
Generic Statistical Business Process Model (GSBPM)
YTY − an integrated production system for business statistics
The North West End of Life Care Model
ESSnet on Data Warehousing 4th Workshop Maia Ennok 20th. of March 2013
Electron Configurations
SDMX in the S-DWH Layered Architecture
Ingredients for a Great Syllable!
COmmon REference Environment - CORE:
Work Session on Statistical Metadata (Geneva, Switzerland May 2013)
6.3 Find Probabilities Using Combinations
Presentation transcript:

Interactive session: Metadata Maia Ennok Head of Data Warehouse Service Statistics Estonia

Schema Maia Ennok ESSNet Data Warehouse 05/24/12 1 Specify Needs 2 Design3 Build4 Collect5 Process6 Analyse7 Disseminate Es ta bli sh ou tp ut ob je cti ve s Id en tif y co nc ep ts C he ck da ta av ail ab ilit y Pr ep ar e bu si ne ss ca se D es ig n ou tp ut s D es ig n va ria bl e de sc rip tio ns D es ig n da ta co lle cti on m et ho do lo gy D es ig n fra m e an d sa m pl e m et ho do lo gy D es ig n st ati sti ca l pr oc es si ng m et ho do lo gy D es ig n pr od uc tio n sy st e m s an d w or kfl o w B uil d da ta co lle cti on in str u m en t B uil d or en ha nc e pr oc es s co m po ne nt s 3. 3 C on fig ur e w or kfl o w s Te st pr od uc tio n sy st e m s Te st st ati sti ca l bu si ne ss pr oc es s 3. 6 Fi na liz e pr od uc tio n sy st e m s S el ec t sa m pl e S et up co lle cti on R un co lle cti on Fi na liz e co lle cti on Int eg rat e da ta Cl as sif y an d co de R ev ie w, va lid at e an d ed it Im pu te D eri ve ne w va ria bl es an d st ati sti ca l un its C al cu lat e w ei gh ts C al cu lat e ag gr eg at es Fi na liz e da ta fil es Pr ep ar e dr aft ou tp ut s V ali da te ou tp ut s Sc rut ini ze an d ex pl ai n A pp ly di sc lo su re co ntr ol Fi na liz e ou tp ut s U pd at e ou tp ut sy st e m s Pr od uc e di ss e mi na tio n pr od uc ts M an ag e rel ea se of di ss e mi na tio n pr od uc ts Pr o m ot e di ss e mi na tio n pr od uc ts M an ag e us er su pp ort Access Layer Interpretation and Analysis Layer Integration Layer Source Layer off SDWH Extra Layer

Task Maia Ennok ESSNet Data Warehouse 05/24/12 Put metadata subsets to schema (write examples) Same groups as previous ineractive session: SBS, STS, SBR, ET GSBPM phases SDWH layers, Extra Layer with description if we missed a layer, off SDWH Metadata subsets in different colors (Statistical, Process, Technical, Quality, Authorisation), Extra metadata subset with description if we miss a subset Presentations with metadata subsets, examples and answered fallowing questions Questions: What is in your opinion the key element of the S-DWH ? VARIABLE vs. DATASET What is the absolute minimum set of metadata that must be defined for that element? What should be the main function of the S-DWH (process support/driver, output/dissemination)? What is the function of the metadata layer?

Generic Statistical Business Process Model (GSBPM) Maia Ennok ESSNet Data Warehouse 05/24/12

SDWH Layers Maia Ennok ESSNet Data Warehouse 05/24/12 I.source layer, is the level in which we locate all the activities related to storing and managing internal (surveys) or external (archives) raw data sources. II.integration layer, on this layer performs the typical Extraction, Transformation and Loading functions; which must be realized in automatic or semi- automatic ways III.interpretation and data analysis layer is specialized to interactive and not structural activities. IV.access layer is addressed to a wide typology of users or informatics instruments for the final presentation of the information sought

Metadata subsets Maia Ennok ESSNet Data Warehouse 05/24/12 Statistical metadata are data about statistical data This definition will obviously cover all kinds of documentation with some reference to any type of statistical data and is applicable to metadata that refer to data stored in a S-DWH as well as any other type of data store Examples: Variable definition; register description; code list. Process metadata are metadata that describe the expected or actual outcome of one or more processes using evaluable and operational metrics Examples: Operator’s manual (active, structured, reference); parameter list (active, structured, reference); log file (passive, structured, reference/structural) Technical metadata are metadata that describe or define the physical storage or location of data. Examples: Server, database, table and column names and/or identifiers; server, directory and file names and/or identifiers Quality metadata are any kind of metadata that contribute to the description or interpretation of the quality of data. Examples: Quality declarations for a survey or register (passive, free-form, reference); documentation of methods that were used during a survey (passive, free-form, reference); most log lists (passive, structured, reference/structural) Authorisation metadata are administrative data that are used by programmes, systems or subsystems to manage users’ access to data. Examples: User lists with privileges; cross references between resources and users

Mapping the BPM-Notation on a SDWH layerd architecture Maia Ennok ESSNet Data Warehouse 05/24/12

Schema with metadata subsets Maia Ennok ESSNet Data Warehouse 05/24/12 Statistical Process Technical Quality Authorisation

3/28/12 Esitluse või esitleja nimi