1 Consider a system of linear equations.  The variables, or unknowns, are referred to as x 1, x 2, …, x n while the a ij ’s and b j ’s are constants.

Slides:



Advertisements
Similar presentations
Chapter 3 Determinants and Eigenvectors 大葉大學 資訊工程系 黃鈴玲 Linear Algebra.
Advertisements

Chapter 1 Systems of Linear Equations
Chapter 8 Numerical Technique 大葉大學 資訊工程系 黃鈴玲 Linear Algebra.
特徵值與多變量 1 Definition 1 If A is an n  n matrix, a real number λ is called an eigenvalue of A if If A is an n  n matrix, a real number λ is called an eigenvalue.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
第二章 太陽能電池的基本原理 及其結構 2-1 太陽能電池的基本原理 2-2 太陽能電池的基本結構 2-3 太陽能電池的製作.
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
1.1 線性方程式系統簡介 1.2 高斯消去法與高斯-喬登消去法 1.3 線性方程式系統的應用(-Skip-)
:New Land ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11871: New Land 解題者:施博修 解題日期: 2011 年 6 月 8 日 題意:國王有一個懶兒子,為了勞動兒子,他想了一個 辦法,令他在某天早上開始走路,直到太陽下山前,靠.
Chapter 2 聯立線性方程式與矩陣 緒言 線性方程式組 (systems of linear equations) 出現 在多數線性模式 (linear model) 中。根據以往解 題的經驗,讀者們也許已發現方程式的解僅與 該方程式的係數有關,求解的過程也僅與係數 的運算有關,只要係數間的相關位置不改變,
5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程 5.4 數學模型與最小平方分析
第一章 信號與系統初論 信號的簡介與DSP的處理方式。 系統特性與穩定性的判定方法。 以MATLAB驗證系統的線性、非時變、因果等特性。
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
Chapter 2 Basic Linear Algebra
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
桁架分析.
© The McGraw-Hill Companies, Inc., 2008 第 6 章 製造流程的選擇與設計.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
7.1 背景介紹 7.2 多解析度擴展 7.3 一維小波轉換 7.4 快速小波轉換 7.5 二維小波轉換 7.6 小波封包
Digital Signal Processing with Examples in M ATLAB ® Chap 1 Introduction Ming-Hong Shih, Aug 25, 2003.
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
結構學(一) 第七次作業 97/05/15.
Fugacity Coefficient and Fugacity
導線測量平差導論 觀測方程式 多餘方程式 實例 最小控制量 網形平差 χ2檢定:擬合度檢定
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
資料結構實習-一 參數傳遞.
1 Finite Continued Fractions 田錦燕 94/11/03 95/8/9( 最後更新 )
觀測量的權 權的觀念與計算.
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
Chapter 2. Recurrence Relations (遞迴關係)
介紹不同坐標系之間的轉換 以LS平差方式求解坐標轉換參數
Chapter 10 m-way 搜尋樹與B-Tree
第五章 內積空間 5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程
本章重點 2-1 有序串列(Ordered List) 2-2 介紹陣列(array) 2-3 矩陣(matrix)的應用
第4章 有限體.
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
2005/7Inverse matrices-1 Inverse and Elementary Matrices.
計算機概論 第6章 數位邏輯設計.
2005/7 Linear system-1 The Linear Equation System and Eliminations.
5 重複迴圈 5.1 增減運算符號 增量運算符號 減量運算符號
連續隨機變數 連續變數:時間、分數、重量、……
CHAPTER 1 SYSTEMS OF LINEAR EQUATIONS Elementary Linear Algebra 投影片設計製作者 R. Larson (7 Edition) 淡江大學 電機系 翁慶昌 教授 1.1 Introduction to Systems of Linear Equations.
: SAM I AM ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11419: SAM I AM 解題者:李重儀 解題日期: 2008 年 9 月 11 日 題意: 簡單的說,就是一個長方形的廟裡面有敵人,然 後可以橫的方向開砲或縱向開砲,每次開砲可以.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
幼兒行為觀察與記錄 第八章 事件取樣法.
結構學 ( 一 ) 第八次作業 97/05/22. 題目一 題目一 (a) 先決定放鬆哪個束制,成為靜定結構 以支承 C 之水平反力為贅力,則 C 點滾支 承變成自由端,即形成靜定基元結構 C 點滿足變位諧和  Δ CH =0.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
9.8 Solution of Differential Equations by Means of Taylor Series.
Chapter 1 Systems of Linear Equations
INDR 262 INTRODUCTION TO OPTIMIZATION METHODS LINEAR ALGEBRA INDR 262 Metin Türkay 1.
Chapter 1 Linear Equations and Vectors 大葉大學 資訊工程系 黃鈴玲 Linear Algebra.
2.1 Operations with Matrices 2.2 Properties of Matrix Operations
1 資訊科學數學 13 : Solutions of Linear Systems 陳光琦助理教授 (Kuang-Chi Chen)
Chapter 2A Matrices 2A.1 Definition, and Operations of Matrices: 1 Sums and Scalar Products; 2 Matrix Multiplication 2A.2 Properties of Matrix Operations;
Chapter 1 Systems of Linear Equations
Chapter 2 Basic Linear Algebra(基本線性代數)
Presentation by: H. Sarper
2.4 Linear Independence (線性獨立) and Linear Dependence(線性相依)
Chapter 2 Basic Linear Algebra ( 基本線性代數 ) to accompany Operations Research: Applications and Algorithms 4th edition by Wayne L. Winston Copyright (c)
Elementary Row Operations 行初等变换 ( Replacement ) Replace one row by the sum of itself and a multiple of another row. ( Interchange ) Interchange two rows.
Lecture 1 Systems of Linear Equations
Linear Algebra 线性代数. Linear Algebra Chapter 1 Linear Equations 线性方程(组) Chapter 2 Matrix Algebra 矩阵代数 Chapter 3 Determinants 行列式 Chapter 4 Vector Spaces.
Chapter 2 Matrices 2.1 Operations with Matrices 2.2 Properties of Matrix Operations 2.3 The Inverse of a Matrix 2.4 Elementary Matrices Elementary Linear.
Dr. Grace F. Wang, Spring As shown in Ch2, the graphical solution procedure can be only used to solve linear programming problems involving two.
Chapter 8 Numerical Technique
Linear Equations 1.1 System of linear Equations
資訊科學數學13 : Solutions of Linear Systems
Presentation transcript:

1 Consider a system of linear equations.  The variables, or unknowns, are referred to as x 1, x 2, …, x n while the a ij ’s and b j ’s are constants.  A set of such equations is called a linear system of m equations in n variables. A solution to a linear set of m equations in n unknowns is a set of values for the unknowns that satisfies each of the system’s m equations. A solution to a linear set of m equations in n unknowns is a set of values for the unknowns that satisfies each of the system’s m equations. 2.2 Matrices and Systems of Linear Equations (p.20)

2 Example 5: Solution to Linear System (p.21) Show that a solution to the linear system and that is not a solution to the linear system. Show that a solution to the linear system and that is not a solution to the linear system.

3 Example 5 Solution To show that is a solution, x 1 =1 and x 2 =2 must be substituted in both equations. The equations must be satisfied. The vector is not a solution, because x 1 =3 and x 2 =1 fail to satisfy 2x 1 -x 2 =0

4 Matrices can simplify and compactly represent a system of linear equations. (p.21) This system of linear equations may be written as Ax=b and is called it’s matrix representation. This system of linear equations may be written as Ax=b and is called it’s matrix representation. A : ( 係數矩陣 ) A : coefficent matrix ( 係數矩陣 ) X : ( 變數矩陣 ) X : variable matrix ( 變數矩陣 ) b : ( 常數矩陣 ) b : constant matrix ( 常數矩陣 ) : ( 擴增矩陣 ) A|b : augmented matrix ( 擴增矩陣 )

5 Row equivalent ( 列同義 ) & Elementary matrix ( 基本矩陣 )

6 交 換 乘常數 相 加

7 Elementary row operations( 基本列運算 ) Elementary row operations (ERO) transforms a given matrix A into a new matrix A’ via one of the following operations:  Type 1 ERO –A’ is obtained by multiplying any row of A by a nonzero scalar. ( 乘上一非零定數 )  Type 2 ERO – Multiply any row of A (say, row i) by a nonzero scalar c. For some j ≠ i, let row j of A’ = c*(row i of A) + row j of A and the other rows of A’ be the same as the rows of A. ( 乘上一非零定數 + 另一列 )  Type 3 ERO – Interchange any two rows of A. ( 任二列交換 ) (p.22)

8 Reduced Row Echelon Form( 簡約列梯陣 )

9 。 矩陣之基本列運算 (EROs) 可求得一方陣的逆方 陣 ( ) 。 。 簡約列梯陣可解線性方程組。 ,使所得矩 陣適合某一特殊形式 ( 同義 ) 。 基本列運算將矩陣變形成另一矩陣,使所得矩 陣適合某一特殊形式 ( 同義 ) 。 原始矩陣與所得矩陣並無相等關係 原始矩陣與所得矩陣並無相等關係 基本列運算 (EROs) 之功能

10 Example :

11

The Gauss-Jordan Method (p.22) Also Gauss-Jordan Elimination( 高斯 - 約旦消去法 ). Using the Gauss-Jordan method, it can be shown that any system of linear equations must satisfy one of the following three cases:  Case 1. The system has no solution.  Case 2. The system has a unique solution.  Case 3. The system has an infinite number of solutions. The Gauss-Jordan method is important because many of the manipulations used in this method are used when solving linear programming problems by the simplex algorithm.

13 The Gauss-Jordan Method(continued) The Gauss-Jordan method solves a linear equation system by utilizing EROs in a systematic fashion.

14 Case1 : a unique solution P.24 The steps to using the Gauss-Jordan method The augmented matrix representation is A|b =

15 Step 1 Multiply row 1 by ½. This Type 1 ERO yields Step 2 Replace row 2 of A1|b1 by -2(row 1 A1|b1) + row 2 of A1|b1. The result of this Type 2 ERO is A 1 |b 1 = A 2 |b 2 =

16 Step 3 Replace row 3 of A 2 |b 2 by -1(row 1 of A 2 |b 2 ) + row 3 of A 2 |b 2 The result of this Type 2 ERO is The first column has now been transformed into A 3 |b 3 =

17 Step 4 Multiply row 2 of A 3 |b 3 by -1/3. The result of this Type 1 ERO is Step 5 Replace row 1 of A 4 |b 4 by -1(row 2 of A 4 |b 4 ) + row 1 of A 4 |b 4. The result of this Type 2 ERO is A 4 |b 4 = A 5 |b 5 =

18 Step 6 Place row 3 of A5|b5 by 2(row 2 of A5|b5) + row 3 of A5|b5. The result of this Type 2 ERO is Column 2 has now been transformed into A 6 |b 6 =

19 Step 7 Multiply row 3 of A 6 |b 6 by 6/5. The result of this Type 1 ERO is Step 8 Replace row 1 of A 7 |b 7 by -5/6(row 3 of A 7 |b 7 )+A 7 |b 7. The result of this Type 2 ERO is A 7 |b 7 = A 8 |b 8 =

20 Step 9 Replace row 2 of A 8 |b 8 by 1/3(row 3 of A 8 |b 8 )+ row 2 of A 8 |b 8. The result of this Type 2 ERO is A 9 |b 9 represents the system of equations and thus the unique solution A 9 |b 9 =

21 Case2 : no solution Example 6 (p.28)

22 Case3 : an infinite number of solutions Example 7 (p.28)

23 Exercise : Solving linear system by Gauss-Jordan Elimination

24

25 原擴增矩陣經有限次之基本列運算後,同義於一上三角矩陣, 故由後代法 (backward-substitution) 解得 x 1,x 2,x 3 。

26 若繼續矩陣之基本列運算,使其係數矩陣同義於一單位矩陣, 則可直接求得 x 1,x 2,x 3 ,而不必使用後代法的運算步驟,繼續 矩陣之基本列運算。

27

28 After the Gauss Jordan method has been applied to any linear system, a variable that appears with a coefficient of 1 in a single equation and a coefficient of 0 in all other equations is called a basic variable ( 基本變數 BV). Any variable that is not a basic variable is called a nonbasic variable ( 非基本變數 NBV). Basic Variables (p.30)

29 p.30 No solution Unique solution BV={x1,x2,x3}, NBV is empty. Infinite number of solutions BV={x1,x2,x3} NBV={x4,x5}

30 Summary of Gauss-Jordan Method Does A' | b ' have a row [ 0, 0,..., 0 | c ] (c 0 ) ? A x = b has no solution. Find BV and NBV. Is NBV empty? A x = b has a unique solution. A x = b has an infinite number of solutions. YesNo Yes No

31 Exercise : 方程組 ,求所有 a 之值。 (1)no solution (2)a unique solution (3) infinite number of solutions (3)a=3 (2) 除了 a=3,-3 以外 (1) a=-3