Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University.

Slides:



Advertisements
Similar presentations
Effects of Climate Change on Natural and Regulated Flood Risks in the Skagit River Basin and Prospects for Adaptation Se-Yeun Lee 1 Alan F. Hamlet 2,1.
Advertisements

Alan F. Hamlet Anthony L. Westerling Tim P. Barnett Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering.
Alan F. Hamlet, Phil Mote, Martyn Clark, Dennis P. Lettenmaier Center for Science in the Earth System Climate Impacts Group and Department of Civil and.
Alan F. Hamlet JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington Hydrologic Implications of Climate.
Coming Attractions from the Washington State Climate Impacts Assessment Lara Whitely Binder Alan Hamlet Marketa McGuire Elsner Climate Impacts Group Center.
Generating a Comprehensive Climate Change Streamflow Scenarios Database for the Columbia River Basin Alan F. Hamlet Kurt Unger Philip W. Mote Eric Salathé.
Optimized Flood Control in the Columbia River Basin for a Global Warming Scenario 1Dept. of Civil and Env. Engineering, UW 2CSES Climate Impacts Group,
Alan F. Hamlet Se-Yeun Lee Kristian Mickelson Marketa McGuire Elsner JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Climate Change in the Columbia Basin Starting the Dialogue CCRF Workshop Cranbrook BC May 30 th 2007.
Alan F. Hamlet Philip W. Mote Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Dennis P. Lettenmaier Alan F. Hamlet JISAO Climate Impacts Group and the Department of Civil and Environmental Engineering University of Washington July,
Alan F. Hamlet Anthony L. Westerling Tim P. Barnett Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering.
Implications of 21st century climate change for the hydrology of Washington October 6, 2009 CIG Fall Forecast Meeting Climate science in the public interest.
Alan F. Hamlet Marketa McGuire Elsner Ingrid Tohver Kristian Mickelson JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Climate Impacts Group and the Department of Civil Engineering University of Washington September,
Impact of Climate Change on Water Resources: Is it an Issue for Emergency Managers? Richard Palmer Dept. of Civil and Environmental Engineering University.
Alan F. Hamlet Philip W. Mote Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Climate Impacts Group and the Department of Civil Engineering University of Washington September,
Alan F. Hamlet Anthony L. Westerling Tim P. Barnett Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering.
Alan F. Hamlet Se-Yeun Lee Kristian Mickelson Marketa McGuire Elsner JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University.
Optimized Flood Control in the Columbia River Basin for a Global Warming Scenario 1Dept. of Civil and Env. Engineering, UW 2CSES Climate Impacts Group,
Planning for Climate Change in the Pacific Northwest Amy Snover, PhD Climate Impacts Group Center for Science in the Earth System University of Washington.
Looking at Impacts of Climate Change on Seattle City Light Lynn Best, Director Environmental Affairs.
Alan F. Hamlet Philip W. Mote Martyn Clark Dennis P. Lettenmaier Center for Science in the Earth System Climate Impacts Group and Department of Civil and.
Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Dr. Alan F. Hamlet JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington 21st Century Water Management:
Alan F. Hamlet Jeffrey Payne Dennis P. Lettenmaier Richard Palmer JISAO Climate Impacts Group and the Department of Civil Engineering University of Washington.
Climate Change and its Impacts in the Pacific Northwest Meade Krosby Climate Impacts Group, University of Washington Osoyoos Lake Water.
Alan F. Hamlet Philip W. Mote Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Alan F. Hamlet, Philip W. Mote, Richard Palmer Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University.
Alan F. Hamlet Philip Mote Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Assessing the Influence of Decadal Climate Variability and Climate Change on Snowpacks in the Pacific Northwest JISAO/SMA Climate Impacts Group and the.
PNW Climate Change Impacts & Related Studies Marketa McGuire Elsner Climate Impacts Group Center for Science in the Earth System Joint Institute for the.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
UBC/UW 2011 Hydrology and Water Resources Symposium Friday, September 30, 2011 DIAGNOSIS OF CHANGING COOL SEASON PRECIPITATION STATISTICS IN THE WESTERN.
Alan F. Hamlet JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington Hydrologic Implications of Climate.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Effects of Climate Variability and Change on the Columbia River Basin
Strategies for Water Planning in an Uncertain Climate
Estimating Changes in Flood Risk due to 20th Century Warming and Climate Variability in the Western U.S. Alan F. Hamlet Dennis P. Lettenmaier.
JISAO Center for Science in the Earth System Climate Impacts Group
Hydrologic Implications of 20th Century Climate Variability and Global Climate Change in the Western U.S. Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier.
Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier
Effects of Climate Variability and Change on the Columbia River Basin
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier
Hydrologic implications of 20th century warming in the western U.S.
JISAO Center for Science in the Earth System Climate Impacts Group
Richard N.Palmer, Alan F. Hamlet, Philip W. Mote, Nate Mantua,
Hydrologic Implications of 20th Century Warming in the Western U.S.
Hydrologic Implications of 20th Century Warming in the Western U.S.
Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier
Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier
Trends in Runoff and Soil Moisture in the Western U.S
Climate Change in the Pacific Northwest
Changing Precipitation Statistics in the West, and Evidence of Frequency of Recurrence from Paleoclimatic Streamflow Reconstructions Alan F. Hamlet Anthony.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier
Water Resources Planning for an Uncertain Future Climate
Hydrologic Changes in the Western U.S. from
Evaluating Recent 20th Century Changes in Cool Season Precipitation and Hydropower Variability in the Western U.S. in the Context of Paleoclimatic Reconstructions.
Presentation transcript:

Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington Transboundary Implications of Climate Change for the Columbia River Basin

Example of a flawed water planning study: The Colorado River Compact of 1922 The Colorado River Compact of 1922 divided the use of waters of the Colorado River System between the Upper and Lower Colorado River Basin. It apportioned **in perpetuity** to the Upper and Lower Basin, respectively, the beneficial consumptive use of 7.5 million acre feet (maf) of water per annum. It also provided that the Upper Basin will not cause the flow of the river at Lee Ferry to be depleted below an aggregate of 7.5 maf for any period of ten consecutive years. The Mexican Treaty of 1944 allotted to Mexico a guaranteed annual quantity of 1.5 maf. **These amounts, when combined, exceed the river's long-term average annual flow**.

Despite a general awareness of these issues in the water planning community, there is growing evidence that future climate variability will not look like the past and that current planning activities, which frequently use a limited observed streamflow record to represent climate variability, are in danger of repeating the same kind of mistakes made more than 80 years ago in forging the Colorado River Compact. Long-term planning and specific agreements influenced by this planning (such as long-term transboundary agreements) should be informed by the best and most complete climate information available, but frequently they are not. What’s the Problem?

Global Climate Change Scenarios and Hydrologic Impacts for the PNW

Pacific Northwest °C °C °C °C Observed 20th century variability +1.7°C +0.7°C +3.2°C

Pacific Northwest % -1 to +3% -1 to +9% -2 to +21% Observed 20th century variability +1% +2% +6%

The warmer locations are most sensitive to warming +2.3C, +6.8% winter precip 2060s

Mote P.W.,Hamlet A.F., Clark M.P., Lettenmaier D.P., 2005, Declining mountain snowpack in western North America, BAMS, 86 (1): Trends in April 1 SWE

April 1 SWE (mm) 20 th Century Climate“2040s” (+1.7 C)“2060s” ( C) -3.6%-11.5% Changes in Simulated April 1 Snowpack for the Canadian and U.S. portions of the Columbia River basin (% change relative to current climate) -21.4%-34.8%

Simulated Changes in Natural Runoff Timing in the Naches River Basin Associated with 2 C Warming Impacts: Increased winter flow Earlier and reduced peak flows Reduced summer flow volume Reduced late summer low flow

Effects of Basin Winter Temperatures Northern Location (colder winter temperatures) Southern Location (warmer winter temperatures)

Water Resources Implications for the Columbia River Basin

Impacts on Columbia Basin hydropower supplies Winter and Spring: increased generation Summer: decreased generation Annual: total production will depend primarily on annual precipitation (+2C, +6%) (+2.3C, +5%) (+2.9C, -4%) NWPCC (2005)

Warming climate impacts on electricity demand NWPCC 2005 Reductions in winter heating demand Small increases in summer air conditioning demand in the warmest parts of the region

Source: Payne, J.T., A.W. Wood, A.F. Hamlet, R.N. Palmer, and D.P. Lettenmaier, 2004, Mitigating the effects of climate change on the water resources of the Columbia River basin, Climatic Change, Vol. 62, Issue 1-3, Adaptation to climate change will require complex tradeoffs between ecosystem protection and hydropower operations

Flood Control vs. Refill Full : Current Climate

Flood Control vs. Refill Streamflow timing shifts can reduce the reliability of reservoir refill Full : Current Climate o C : o C No adaption

Flood Control vs. Refill Streamflow timing shifts can reduce the reliability of reservoir refill Full : Current Climate : o C plus adaption o C : o C No adaption

Temperature thresholds for coldwater fish in freshwater +1.7 °C +2.3 °C Warming temperatures will increasingly stress coldwater fish in the warmest parts of our region –A monthly average air temperature of 68ºF (20ºC) has been used as an upper limit for resident cold water fish habitat, and is known to stress Pacific salmon during periods of freshwater migration, spawning, and rearing

Implications for Transboundary Water Management in the Columbia Basin Climate change will result in significant hydrologic changes in the Columbia River and its tributaries. Snowpack in the BC portion of the Columbia basin is much less sensitive to warming in comparison with portions of the basin in the U.S. and streamflow timing shifts will also be smaller in Canada. As warming progresses, Canada will have an increasing fraction of the snowpack contributing to summer streamflow volumes in the Columbia basin. These differing impacts in the two countries have the potential to “unbalance” the current coordination agreements, and will present serious challenges to meeting instream flows on the U.S. side. Changes in flood control, hydropower production, and instream flow augmentation will all be needed as the flow regime changes.

The Columbia River Treaty is focused primarily on conjunctive hydropower and flood control operations. Arguably the greatest shortcoming of the agreement in the context of climate change adaptation is that currently the CRT does not encompass tradeoffs between the full range of management concerns facing the US and Canada. Of particular concern is the need to encompass the different (and often competing) ecosystem needs in Canada and the US. Does the Columbia River Treaty have the flexibility and scope needed to adapt to the water resources challenges of the 21 st Century? Implications for the Columbia River Treaty

Selected References and URL’s Climate Impacts Group Website White Papers, Agenda, Presentations for CIG 2001 Climate Change Workshop ftp://ftp.hydro.washington.edu/pub/hamleaf/climate_change_white_papers Climate Change Streamflow Scenarios for Water Planning Studies Northwest Power and Conservation Council Columbia Basin Hydropower Study Book Chapter on Transboundary Challenges in the Columbia Basin ftp://ftp.hydro.washington.edu/pub/hamleaf/transboundary_climate_change