The Reflection of Light: Mirrors

Slides:



Advertisements
Similar presentations
Learning Outcome Draw a ray diagram to find the position, nature and size of the image produced by a concave and convex mirrors.
Advertisements

Chapter 17 Geometrical Optics.
1 Geometric optics Light in geometric optics is discussed in rays and represented by a straight line with an arrow indicating the propagation direction.
TOC 1 Physics 212 and 222 Reflection and Mirrors What do we see? Law of Reflection Properties of Spherical Mirrors Ray Tracing Images and the Equations.
→ ℎ
Chapter 31 Images.
Mirrors Law of Reflection The angle of incidence with respect to the normal is equal to the angle of reflection.
A wave front consists of all points in a wave that are in the same phase of motion. A wave front is one of many properties that light waves share with.
Chapter 32Light: Reflection and Refraction. Electromagnetic waves can have any wavelength; we have given different names to different parts of the wavelength.
Reflection of Light. When light rays hit an object, they change direction. The type of surface the light encounters determines the type of reflection.
Curved Mirrors.
air water As light reaches the boundary between two media,
Review from last class – Complete in your notes. 1.A pinhole camera creates an image of a 37- meter-tall tree. If the image is 2.4 cm tall and inverted,
Chapter 25. The Reflection of Light: Mirrors
Chapter 23 Mirrors and Lenses.
Light: Geometric Optics
Chapter 36 Image Formation. Summary: mirrors Sign conventions: + on the left - on the right Convex and plane mirrors: only virtual images (for real objects)
Chapter 25. Mirrors and the Reflection of Light Our everyday experience that light travels in straight lines is the basis of the ray model of light. Ray.
Chapter 36 Image Formation Dr. Jie Zou PHY 1371.
Physics 110G Light TOC 1 What do we see? Law of Reflection Properties of Spherical Mirrors Ray Tracing Images and the Equations.
Copyright © 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction.
Reflection Physics Department, New York City College of Technology.
Chapter 26 Optics I (Mirrors). LIGHT Properties of light: Light travels in straight lines: Laser.
Optics Reflections/Mirrors 1 What do we see? Law of Reflection Properties of Spherical Mirrors Ray Tracing Images and the Equations.
Physics Mechanics Fluid Motion Heat Sound Electricity Magnetism Light.
Geometrical Optics (Lecture II)
Mirrors & Lenses Chapter 23 Chapter 23 Learning Goals Understand image formation by plane or spherical mirrors Understand image formation by converging.
Curved Mirrors The most common type of curved mirror is a spherical mirror A spherical mirror has the shape of a section from the surface of a sphere.
Chapter 34. Images What is Physics? Two Types of Image
Formation of Images by Spherical Mirrors. For an object infinitely far away (the sun or starts), the rays would be precisely parallel.
Ray Model A useful model under certain circumstances to explain image formation. Ray Model: Light travels in straight-line paths, called rays, in ALL.
Mirrors and Lenses.
Chapter 25 The Reflection of Light: Mirrors Wave Fronts and Rays A hemispherical view of a sound wave emitted by a pulsating sphere. The rays are.
Image Formation. We will use geometrical optics: light propagates in straight lines until its direction is changed by reflection or refraction. When we.
Light: Geometric Optics Chapter Ray Model of Light Light travels in a straight line so a ray model is used to show what is happening to the light.
Chapter 25 The Reflection of Light: Mirrors. LAW OF REFLECTION The incident ray, the reflected ray, and the normal to the surface all lie in the same.
Chapter 25. Mirrors and the Reflection of Light
AP Physics Chp 25. Wavefronts – location of the same point for the same phase of the wave Rays – perpendicular to the wavefront Plane waves – all rays.
Characteristics & Ray Diagrams
PROOF OF d i = d o ii rr 11 22 . DESCRIPTION OF d i = d o  Ray of light leaves base & strikes mirror at  i (reflected at same  )  Angles.
3/4/ PHYS 1442 – Section 004 Lecture #18 Monday March 31, 2014 Dr. Andrew Brandt Chapter 23 Optics The Ray Model of Light Reflection; Image Formed.
1. Two long straight wires carry identical currents in opposite directions, as shown. At the point labeled A, is the direction of the magnetic field left,
25.4: Spherical Mirrors. Concave Mirror Light rays near and parallel to the principal axis are reflected from a concave mirror and converge at the focal.
Chapter 36 Image Formation.
AP Physics IV.C Geometric Optics. Wave Fronts and Rays.
Plane Mirror: a mirror with a flat surface
Reflection & Mirrors. Reflection The turning back of an electromagnetic wave (light ray) at the surface of a substance. The turning back of an electromagnetic.
Physics Mechanics Fluid Motion Heat Sound Electricity Magnetism Light.
The amount of reflection depends on how different the media are.
Reflection of Light. Reflectance u Light passing through transparent medium is transmitted, absorbed, or scattered u When striking a media boundary, light.
Chapter 36 Image Formation 1: 1. Flat mirror 2. Spherical mirrors.
Mirrors. Mirrors and Images (p 276) Light travels in straight lines, this is the reason shadows and images are produced (p 277) Real images are images.
Calculate distances and focal lengths using the mirror equation for concave and convex spherical mirrors. Draw ray diagrams to find the image distance.
A light beam striking a boundary between two media can be partly transmitted and partly reflected at the boundary.
Mirrors.
PHY 102: Lecture Wave Fronts and Rays 9.2 Reflection of Light
Basics Reflection Mirrors Plane mirrors Spherical mirrors Concave mirrors Convex mirrors Refraction Lenses Concave lenses Convex lenses.
Reflection of Light Reflection – The bouncing back of a particle or wave that strikes the boundary between two media. Law of Reflection – The angle of.
Lecture 2: Reflection of Light: Mirrors (Ch 25) & Refraction of Light: Lenses (Ch 26)
The Reflection of Light: Mirrors
Mechanics Fluids Sound Heat Electricity Magnetism Light
The Reflection of Light: Mirrors
air water As light reaches the boundary between two media,
Formation of Images by Spherical Mirrors
Reflection of Light from Spherical Mirrors
REFLECTIONS of PLANE AND SPHERICAL MIRRORS
The Reflection of Light: Mirrors
The Reflection of Light: Mirrors
The Reflection of Light: Mirrors
The Reflection of Light: Mirrors
Presentation transcript:

The Reflection of Light: Mirrors

25.2 The Reflection of Light LAW OF REFLECTION The incident ray, the reflected ray, and the normal to the surface all lie in the same plane, and the angle of incidence equals the angle of reflection.

25.2 The Reflection of Light In specular reflection, the reflected rays are parallel to each other.

25.3 The Formation of Images by a Plane Mirror The person’s right hand becomes the image’s left hand. The image has three properties: It is upright. It is the same size as you are. The image is as far behind the m mirror are you are in front of it.

25.3 The Formation of Images by a Plane Mirror The geometry used to show that the image distance is equal to the object distance.

25.3 The Formation of Images by a Plane Mirror Conceptual Example 1 Full-Length Versus Half-Length Mirrors What is the minimum mirror height necessary for her to see her full image?

mirror. If the outside surface is polished, is it a convex mirror. 25.4 Spherical Mirrors If the inside surface of the spherical mirror is polished, it is a concave mirror. If the outside surface is polished, is it a convex mirror. The law of reflection applies, just as it does for a plane mirror. The principal axis of the mirror is a straight line drawn through the center and the midpoint of the mirror.

A point on the tree lies on the principal axis of the concave mirror. 25.4 Spherical Mirrors A point on the tree lies on the principal axis of the concave mirror. Rays from that point that are near the principal axis cross the axis at the image point.

Light rays near and parallel to the principal axis are reflected 25.4 Spherical Mirrors Light rays near and parallel to the principal axis are reflected from the concave mirror and converge at the focal point. The focal length is the distance between the focal point and the mirror.

The focal point of a concave mirror is halfway between 25.4 Spherical Mirrors The focal point of a concave mirror is halfway between the center of curvature of the mirror C and the mirror at B.

When paraxial light rays that are parallel to the principal axis 25.4 Spherical Mirrors When paraxial light rays that are parallel to the principal axis strike a convex mirror, the rays appear to originate from the focal point.

25.5 The Formation of Images by Spherical Mirrors CONCAVE MIRRORS This ray is initially parallel to the principal axis and passes through the focal point. This ray initially passes through the focal point, then emerges parallel to the principal axis. This ray travels along a line that passes through the center.

25.5 The Formation of Images by Spherical Mirrors When an object is located between the focal point and a concave mirror, and enlarged, upright, and virtual image is produced.

25.5 The Formation of Images by Spherical Mirrors CONVEX MIRRORS Ray 1 is initially parallel to the principal axis and appears to originate from the focal point. Ray 2 heads towards the focal point, emerging parallel to the principal axis. Ray 3 travels toward the center of curvature and reflects back on itself.

25.5 The Formation of Images by Spherical Mirrors The virtual image is diminished in size and upright.

25.6 The Mirror Equation and Magnification

25.6 The Mirror Equation and Magnification These diagrams are used to derive the mirror equation.

25.6 The Mirror Equation and Magnification Summary of Sign Conventions for Spherical Mirrors