Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: Units Index of refraction of a medium equals the ratio of the speed of light in a vacuum and the speed of light in the medium Formula Units
Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: v=f Units m=1 m s s Index of refraction of a medium equals the ratio of the speed of light in a vacuum and the speed of light in the medium Formula Units
Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: v=f Units m=1 m s s Index of refraction of a medium equals the ratio of the speed of light in a vacuum and the speed of light in the medium Formula n = c v Units none=m/s m/s
Waves and optics formula Snell's law: the product of the index of refraction and the sin of the incident angle equals the product of the index of refraction of the second medium and the sin of the refracted angle n 1 sin 1 = n 2 sin 2 The sin of the critical angle ( Above this incident angle, will reflect, but will not refract ) equals the ratio of the index of refraction in the second medium and the index of refraction of the first medium Sin c = n 2 n 1
Waves and optics formula Snell's law: the product of the index of refraction and the sin of the incident angle equals the product of the index of refraction of the second medium and the sin of the refracted angle n 1 sin 1 = n 2 sin 2 The sin of the critical angle ( Above this incident angle, will reflect, but will not refract ) equals the ratio of the index of refraction in the second medium and the index of refraction of the first medium Sin c = n 2 n 1
Waves and optics formula Snell's law: the product of the index of refraction and the sin of the incident angle equals the product of the index of refraction of the second medium and the sin of the refracted angle n 1 sin 1 = n 2 sin 2 The sin of the critical angle ( Above this incident angle, will reflect, but will not refract ) equals the ratio of the index of refraction in the second medium and the index of refraction of the first medium Sin c = n 2 n 1
Waves and optics formula Formula used for the relationships between image location, object location and the focal length of the lens or mirror = 1 s i s o f The magnification equals the ration of the image height to the object height or the negative ratio of the image location to the object location M = h i M = - s i h o s o
Waves and optics formula Formula used for the relationships between image location, object location and the focal length of the lens or mirror = 1 s i s o f The magnification equals the ration of the image height to the object height or the negative ratio of the image location to the object location M = h i M = - s i h o s o
Waves and Optics Formula The focal length equals the radius of curvature divided by 2 for lens and mirrors f = R 2
Waves and Optics Formula The focal length equals the radius of curvature divided by 2 for lens and mirrors f = R 2
Waves and Optics Formula Interference formula single slit equals the d sin = m d = single slit width sin f = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d
Waves and Optics Formula Interference formula single slit equals the d sin = m d = single slit width sin f = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d
Waves and Optics Formula Interference formula single slit equals the d sin = m d = single slit width sin f = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d
Waves and Optics Formula Interference formula single slit equals the d sin = m d = single slit width sin = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d
Waves and Optics Formula Interference formula single slit equals the d sin = m d = single slit width sin = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d
Waves and Optics Formula Interference formula single slit equals the d sin = m d = single slit width sin = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d
Waves and Optics Formula Interference formula single slit equals the d sin = m d = single slit width sin = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d
Waves and Optics Formula Interference formula single slit equals the d sin = m d = single slit width sin = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d
Waves and Optics Formula Interference formula double or multiple slit equals the d sin = m d = distance between slits sin = diffraction angle m = 1,2,.. Maxima The position of x m ( 1,2 maxima) equals product of the maxima, wavelength, distance to screen divided by the slit width x m = m L d
Plane Mirror
S o equals S i
Plane Mirror S o equals S i Image is upright, virtual, and same size
Plane Mirror S o equals S i Image is upright, virtual, and same size
Plane Mirror S o equals S i Image is upright, virtual, and same size
Plane Mirror So equals Si Image is upright, virtual, and same size
Plane Mirror
Image upright
Plane Mirror Image upright, virtual,
Plane Mirror Image upright, virtual, same size
Plane Mirror Block ½ mirror?
Plane Mirror Block ½ mirror? Image upright, virtual, same size
Plane Mirror Block ½ mirror? Image upright, virtual, same size Dimmer
Shadows
Elicpses – lunar, solar
Convex Mirror S o =10 cm
Convex Mirror S o =10 cm R=6cm f=3cm
Convex Mirror S o =10 cm R=6cm f=3cm
Concave Mirror S o =10 cm R=6cm f=+3cm
Concave Mirror
S i = 4.28 cm
Concave Mirror S i = 4.28 cm S o =10 cm R=6cm f=+3cm
Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Convex Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Convex Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller
Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size
Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger Parallel Rays
Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger Parallel Rays - No Image
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = - (-15.0 cm) 2.5 cm M = Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Inverted Real Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Upright Virtual Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Upright Virtual Larger
Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Upright Virtual Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Inverted Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Upright Real Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Upright Virtual Larger
Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Upright Virtual Smaller
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident refracted
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident refracted n 1 d incident =n 2 d refracted
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident refracted n 1 d incident =n 2 d refracted sin incident =d incident radius sin efracted = d refracted radius
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident refracted n 1 d incident =n 2 d refracted sin incident =d incident radius sin efracted = d refracted radius Therefore n 1 sin i ncident =n 2 sin refracted
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident refracted n 1 d incident =n 2 d refracted sin incident =d incident radius sin efracted = d refracted radius Therefore n 1 sin i ncident =n 2 sin refracted
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident = 10 0 refracted n 1 d incident =n 2 d refracted sin incident =d incident radius sin efracted = d refracted radius Therefore n 1 sin i ncident =n 2 sin refracted
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident = 10 0 refracted =7.5 0 n 1 d incident =n 2 d refracted sin incident =d incident radius sin efracted = d refracted radius Therefore n 1 sin i ncident =n 2 sin refracted
Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident = 10 0 refracted =7.5 0 n 1 d incident =n 2 d refracted sin incident =d incident radius sin efracted = d refracted radius Therefore n 1 sin i ncident =n 2 sin refracted n 1 = air = 1.0
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident = 10 0 refracted =7.5 0 n 1 d incident =n 2 d refracted sin incident =d incident radius sin efracted = d refracted radius Therefore n 1 sin i ncident =n 2 sin refracted n 1 = air = 1.0 Sin 10 o = n 2 = n water = 1.33 Sin 7.5 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident = 10 0 refracted =7.5 0 n 1 d incident =n 2 d refracted sin incident =d incident radius sin efracted = d refracted radius Therefore n 1 sin i ncident =n 2 sin refracted n 1 = air = 1.0 Sin 10 o = n 2 = n water = 1.33 Sin 7.5 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air incident = 10 0 refracted =7.5 0 n 1 d incident =n 2 d refracted sin incident =d incident radius sin efracted = d refracted radius Therefore n 1 sin i ncident =n 2 sin refracted n 1 = air = 1.0 Sin 10 o = n 2 = n water = 1.33 Sin 7.5 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air incident = 10 0 refracted = n 1 sin i ncident =n 2 sin refracted n 2 = air = 1.0 n 1 = n water = sin efracted sin ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air incident = 10 0 refracted = n 1 sin i ncident =n 2 sin refracted n 2 = air = 1.0 n 1 = n water = sin efracted sin ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air incident = 10 0 refracted = n 1 sin i ncident =n 2 sin refracted n 2 = air = 1.0 n 1 = n water = sin efracted sin ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air incident = 10 0 refracted = n 1 sin i ncident =n 2 sin refracted n 2 = air = 1.0 n 1 = n water = sin efracted sin ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air incident = 10 0 refracted = n 1 sin i ncident =n 2 sin refracted n 2 = air = 1.0 n 1 = n water = sin efracted sin ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air incident = 10 0 refracted = n 1 sin i ncident =n 2 sin refracted n 2 = air = 1.0 n 1 = n water = sin efracted sin ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air incident = 10 0 refracted = n 1 sin i ncident =n 2 sin refracted n 2 = air = 1.0 n 1 = n water = sin efracted sin ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air incident = 10 0 refracted = n 1 sin i ncident =n 2 sin refracted n 2 = air = 1.0 n 1 = n water = sin efracted sin ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air incident = 10 0 refracted = n 1 sin i ncident =n 2 sin refracted n 2 = air = 1.0 n 1 = n water = sin efracted sin ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o
Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air incident = 10 0 refracted = n 1 sin i ncident =n 2 sin refracted n 2 = air = 1.0 n 1 = n water = sin efracted sin ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r velocity of light decreases v = c n Frequency remains the same n = vacuum n n glass = 1.3 n air = 1.0
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r velocity of light decreases v = c n Frequency remains the same n = vacuum n n air = 1.0 n glass = 1.3
Refraction incident Normal refracted r incident refracted r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r velocity of light decreases v = c n Frequency remains the same n = vacuum n n air =1.0 n glass = 1.3
Refraction incident Normal refracted r incident refracted r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n
Refraction incident Normal refracted r incident refracted r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n
Refraction incident Normal refracted r incident refracted r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n
Refraction incident Normal refracted r incident refracted r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n
Refraction incident Normal refracted r incident refracted r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n
Refraction incident Normal refracted r incident refracted r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n
Refraction incident Normal refracted r incident refracted r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n
Refraction incident Normal refracted r incident refracted r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n
Snell’s Law Incident = 10 o Refracted = 6.5 o n 1 for air = 1.0 n 2 = ? n 1 sin i = n 2 sin 2 n 1 sin i = n 2 = 1.0 sin 10 o =1.5 sin 2 sin 6.5 0
Snell’s Law Incident = 15 o Refracted = 9.2 o n 1 for air = 1.0 n 2 = ? n 1 sin i = n 2 sin 2 n 1 sin i = n 2 = 1.0 sin 10 o =1.5 sin 2 sin 9.2 0
Snell’s Law Incident = 20 o Refracted = 16.1 o n 1 for air = 1.0 n 2 = ? n 1 sin i = n 2 sin 2 n 1 sin i = n 2 = 1.0 sin 20 o =1.5 sin 2 sin
Snell’s Law Incident = 10.0 o Refracted = 15.4 o n 1 = ? n 2 = 1.0 (air) n 1 sin i = n 2 sin 2 n 1 = n 2 sin 2 = = 1.0 sin =1.5 sin 1 sin
Snell’s Law Incident = 15.0 o Refracted = 23.3 o n 1 = ? n 2 = 1.0 (air) n 1 sin i = n 2 sin 2 n 1 = n 2 sin 2 = = 1.0 sin =1.5 sin 1 sin
Critical Angle- Total Internal Reflection Incident = ? If n 1 =1.5 n 2 =n air =1.0 sin c = n 2 n 1 c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin i = n 2 sin 2
Critical Angle- Total Internal Reflection Incident = ? If n 1 =1.5 n 2 =n air =1.0 sin c = n 2 n 1 c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin i = n 2 sin 2
Critical Angle- Total Internal Reflection Incident = ? If n 1 =1.5 n 2 =n air =1.0 sin c = n 2 n 1 c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin i = n 2 sin 2
Critical Angle- Total Internal Reflection Incident = ? If n 1 =1.5 n 2 =n air =1.0 sin c = n 2 =1.0 n c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin i = n 2 sin 2
Snell’s Law Incident = 20.0 o Refracted = 31.6 o n 1 = ? n 2 = 1.0 (air) n 1 sin i = n 2 sin 2 n 1 = n 2 sin 2 = = 1.0 sin =1.5 sin 1 sin
Critical Angle- Total Internal Reflection Incident = ? If n 1 =1.5 n 2 =n air =1.0 sin c = n 2 n 1 c = 42 o Refracted = 31.6 o n 1 = ? n 2 = 1.0 (air) n 1 sin i = n 2 sin 2
Critical Angle- Total Internal Reflection Incident = ? If n 1 =1.5 n 2 =n air =1.0 sin c = n 2 n 1 c = 42 o Any incident angle above that critical angle will only reflect n 1 sin i = n 2 sin 2
Critical Angle- Total Internal Reflection Incident = ? If n 1 =1.5 n 2 =n air =1.0 sin c = n 2 n 1 c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin i = n 2 sin 2
Critical Angle- Total Internal Reflection Incident = ? If n 1 =1.5 n 2 =n air =1.0 sin c = n 2 n 1 c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin i = n 2 sin 2
Critical Angle- Total Internal Reflection Incident = ? If n 1 =1.5 n 2 =n air =1.0 sin c = n 2 n 1 c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin i = n 2 sin 2
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o o
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o o Law of Reflection
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o How would the reflection and refraction be different ?
15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin 1 = n 2 sin 2 n 1 sin 1 = sin 2 n 2 1.0sin 15 0 = sin o = 2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin o = 2 36 o 45.6 o How would the reflection and refraction be different ?
S o =9.0 cm R=6cm f=+3cm Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller S o =9.0 cm R=6cm f= +3cm
Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller S o =9.0 cm R=6cm f= +3cm
Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller S o =9.0 cm R=6cm f= +3cm
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller
Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger
Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = No Image- Parallel RaysReal Larger
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual
Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40
Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Smaller 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40
Compound Optical Instruement d o =___? h= ____ f 1 =___ cm f 2 = ___ cm 1.Measure d o, f 1,,f 2 h and draw rays to determine initial and final d i 2.Calculate initial and final d i positions 3.Measure final h and determine magnification by drawing and by calculations
Compound Microscope
S o =29 h=.67 f=15 S i =31 M=31/29 M=1.07 H=.75
Compound Microscope f e =26 S o =17
Compound Microscope
Compound Optical Instruement f=26 S o =17 h=.75 S i =-49 h = 2.0 M=49/17 M=2.9
Compound Microscope
Diffraction Path length differences produce constructive Interference if path length difference is a whole number multiples of the wavelength Destructive Interference will occur if path length difference is multiples of ½ of a wavelength
Diffraction Path length differences produce constructive Interference if path length difference is a whole number multiples of the wavelength Destructive Interference will occur if path length difference is multiples of ½ of a wavelength
Diffraction Path length differences produce constructive Interference if path length difference is a whole number multiples of the wavelength Destructive Interference will occur if path length difference is multiples of ½ of a wavelength
Single Slit Interference
Single Slit max min
Single Slit max min
Single Slit max Min
Single Slit max min
Single Slit Diffraction
d Sin = opp = m hyp d m = 0,1,2… for minima
Single Slit Diffraction d Sin = opp = m hyp d m = 0,1,2… for minima
Single Slit Diffraction d Sin = opp = m hyp d m = 0,1,2… for minima
Single Slit Diffraction d Sin = opp = m hyp d m = 0,1,2… for minima
Single Slit Diffraction d Sin = opp = m hyp d m = 0,1,2… for minima
Single Slit Diffraction d Sin = opp = m hyp d m = 1,2… for minima
Single Slit Diffraction d Sin = opp = m hyp d m = 1,2… for minima
Single Slit Diffraction Sin = opp = m hyp d m = 1,2… for minima
Single Slit max min
Single Slit max min L = distance to screen
Single Slit max min L = distance to screen xmxm X m distance To minima
Single Slit max min Tan = x m L xmxm X m distance To minima
Single Slit max min Tan = x m L xmxm X m distance To minima Sin = m d
Single Slit max min Tan = x m L xmxm X m distance To minima Sin = m d Tan = sin
Single Slit max min Tan = x m L xmxm X m distance To minima Sin = m d Tan = sin X m = m L d
Young’s Double Slit Experiment
Max
Young’s Double Slit Experiment Max
Young’s Double Slit Experiment Max
Young’s Double Slit Experiment Max
Young’s Double Slit Experiment Max
Young’s Double Slit Experiment Max
Young’s Double Slit Experiment Max
Young’s Double Slit Experiment Max
Young’s Double Slit Experiment Max
Young’s Double Slit Experiment Max Sin = m = xm d L Length (L) to screen
Young’s Double Slit Experiment Max Sin = m = xm d L Length (L) to screen
Young’s Double Slit Experiment Max Sin = m = xm d L Length (L) to screen xmxm
Young’s Double Slit Experiment Max Sin = m = xm d L Length (L) to screen xmxm
Young’s Double Slit Experiment Max Sin = m = x m = tan d L = x m d m L Length (L) to screen xmxm
Multiple Slit Diffraction Sin = m = x m d L = x m d m L m = 0, 1,2, 3 … max
Multiple Slit Diffraction Sin = m = x m d L = x m d m L m = 0, 1,2, 3 … max
Multiple Slit Diffraction Sin = m = x m d L = x m d m L m = 0, 1,2, 3 … max
Multiple Slit Diffraction Sin = m = x m d L = x m d m L m = 0, 1,2, 3 … max
Multiple Slit Diffraction Sin = m = x m = tan d L = x m d m L m L d m = 0, 1,2, 3 … max
Multiple Slit Diffraction Sin = m = x m = tan d L = x m d m L x m m L d m = 0, 1,2, 3 … max
Single, Double, Multiple Slit Diffraction
Based on constructive and destructive interference
Single, Double, Multiple Slit Diffraction Based on constructive and destructive interference Caused by path length differences
Single, Double, Multiple Slit Diffraction Based on constructive and destructive interference Caused by path length differences Geometry based on sin = m x m =tan d L
Single, Double, Multiple Slit Diffraction Based on constructive and destructive interference Caused by path length differences Geometry based on sin = m x m d L Single Slit m is for minima with broad central maxima Double / Multiple m is for maximum
Reflection-Interference, Newton’s Rings, Thin Film Interference Higher Index of Refraction Lower Index of Refraction
Reflection-Interference, Newton’s Rings, Thin Film Interference Higher Index of Refraction Lower Index of Refraction Relected ray experience a half wavelength phase change
Reflection-Interference, Newton’s Rings, Thin Film Interference
Higher Index of Refraction Lower Index of Refraction
Reflection-Interference, Newton’s Rings, Thin Film Interference Higher Index of Refraction Lower Index of Refraction No phase change occurs
Air Wedge Reflection-Interference Hair
Air Wedge Reflection-Interference
Air Glass
Air Wedge Reflection-Interference
Phase change reflection
Air Wedge Reflection-Interference Phase change reflection – – n air < n glass
Air Wedge Reflection-Interference
Towards normal refraction
Air Wedge Reflection-Interference Towards normal refraction n air < n glass
Air Wedge Reflection-Interference
No phase change reflection n glass >n air
Air Wedge Reflection-Interference
Away from normal refraction
Air Wedge Reflection-Interference Away from normal refraction – n glass > n air
Air Wedge Reflection-Interference
Away from normal refraction
Air Wedge Reflection-Interference Away from normal refraction n glass > n air speeds up
Air Wedge Reflection-Interference
Phase change reflection
Air Wedge Reflection-Interference Phase change reflection n air < n glass
Air Wedge Reflection-Interference
Towards normal refraction
Air Wedge Reflection-Interference Towards normal refraction n air < n glass
Air Wedge Reflection-Interference Towards normal
Air Wedge Reflection-Interference Away from normal refraction
Air Wedge Reflection-Interference Away from normal Refraction n glass > n air
Air Wedge Reflection-Interference Towards normal No Phase Change Away from normal Away from normal Phase Change Toward Normal Phase Change Away from normal
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d ½ + 2d = D l
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change If the path length of the light that is transmitted through the upper glass plate, then reflected off the air glass interference of the bottom plate with 180 degree phase reversal,then transmitted through the upper plate is multiples of ½ of a the path length of the light that is refracts through the upper glass plate, then reflects off the upper glass air interference without a phase change will interfer constructively.
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d ½ + 2d = D l d = distance between the plates
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d ½ + 2d = D l
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d ½ + 2d = D l
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d ½ + 2d = D l
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d l = ½ + 2d Constructive Interference = n
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d l = ½ + 2d Constructive Interference = n
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d l = ½ + 2d Constructive Interference = l =m = ½ + 2d m=1/2 + 2 d
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d l = ½ + 2d Constructive Interference = l =m = ½ + 2d m=1/2 + 2 d
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d l = ½ + 2d Constructive Interference = l =m = ½ + 2d m=1/2 + 2 d
Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change l = d + ½ + d l = ½ + 2d Constructive Interference = l =m = ½ + 2d 1/2 + 2 d
Thin Film Interference Antiflective coating with an index of refraction Greater than air but less than the glass lens n air =1.0 n thin film = 1.3 n glass = 1.7
Thin Film Interference
Effective refracted ray path length= thickness down * index of refraction because the wavelength decreases as it enters the higher index of refraction of the medium added to to thickness up * index of refraction added to ½ wavelength due to phase refersal. l effrr = nt + nt + ½ l effrr = 2nt+ ½ Reflected ray l effr = ½ Constructive inteference occurs at whole multiples of wavelength path length differences. Therefore in this case the refracted,reflected,refracted ray will show constructive interference if 2nt = m t = m approxiamately 2n Destructive interference occurs at ½ whole multiples of wavelength path length differences Therefore in this case the refracted,reflected,refracted ray will show destructive interference If 2nt = m t=m approxiamately 2 4n n =1.0 n thin film = 1.3
Thin Film Interference Antiflective coating with an index of refraction Greater than and the glass lens n air =1.0 n thin film = 1.6 n glass = 1.4
Thin Film Interference
Effective refracted ray path length= thickness down * index of refraction because the wavelength decreases as it enters the higher index of refraction of the medium added to to thickness up * index of refraction l effrr = nt + nt l effrr = 2nt Reflected ray l effr = ½ Constructive inteference occurs at whole multiples of wavelength path length differences. Therefore in this case the refracted,reflected,refracted ray will show constructive interference if 2nt = m - ½ t = m +1/2 t = (m+1/2) 2n 2n Destructive interference occurs at ½ whole multiples of wavelength path length differences Therefore in this case the refracted,reflected,refracted ray will show destructive interference If 2nt = m t = m + 2 4n 4n n =1.0 n thin film = 1.3
Thin Film Interference Effective refracted ray path length= thickness down * index of refraction because the wavelength decreases as it enters the higher index of refraction of the medium added to to thickness up * index of refraction added to ½ wavelength due to phase refersal. l effrr = nt + nt + ½ l effrr = 2nt+ ½ Reflected ray l effr = ½ Constructive inteference occurs at whole multiples of wavelength path length differences. Therefore in this case the refracted,reflected,refracted ray will show constructive interference if 2nt = m t = m 2n Destructive interference occurs at ½ whole multiples of wavelength path length differences Therefore in this case the refracted,reflected,refracted ray will show destructive interference If 2nt = m t=m 2 4n n =1.0 n thin film = 1.3
Thin film interference n 1 = air n 2 =1.33
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n
Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n If l was 4.8 x10 -7 m what would the miniumum thickness need to cause Constructive interference? If l was 4.8 x10 -7 m what would the miniumum thickness need to cause Destructive interference?
Summary Constructive interference – pathlength equals m Destructive interference – pathlength equal m 2 If n 1 n 3 or n 1 >n 2 <n 3 than t = (m+1/2) constructive 2n If n 1 n 3 or n 1 >n 2 <n 3 than t = (m+1/2) destructive 4n
Summary Constructive interference – pathlength equals m Destructive interference – pathlength equal m 2 If n 1 n 2 >n 3 than t = m constructive 2n If n 1 n 2 >n 3 than t = m destructive 4n