Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: Units Index of refraction of a medium equals the ratio.

Slides:



Advertisements
Similar presentations
1© Manhattan Press (H.K.) Ltd. Final image at infinity Eye-ring Eye-ring 12.6 Refracting telescope.
Advertisements

Created by Stephanie Ingle Kingwood High School
Chapter 15 Pretest Light and Refraction
Optics 1. 2 The electromagnetic spectrum Visible light make up only a small part of the entire spectrum of electromagnetic waves. Unlike sound waves and.
Suppose that you hold the transparency in the photograph below in front of a mirror. How will its reflection appear? Is the image: (1) inverted top-to-bottom?
Optics Review #1 LCHS Dr.E.
Physics Light: Geometric Optics 23.1 The Ray Model of Light 23.2 Reflection - Plane Mirror 23.3 Spherical Mirrors 23.5 Refraction - Snell’s law.
Reflection and Refraction of Light
Chapter 34 The Wave Nature of Light; Interference
The Refraction of Light The speed of light is different in different materials. We define the index of refraction, n, of a material to be the ratio of.
Optics The Study of Light.
Reflection and Refraction. Reflection  Reflection occurs when light bounces off a surface.  There are two types of reflection – Specular reflection.
Light: Geometric Optics
Geometric Optics The Law of Reflection.
WAVES Optics.
Review Exam 2. Light Behaves Like All Waves The frequency of an electromagnetic wave is related to its wavelength: Wavelengths of visible light: 400 nm.
Interference Physics 202 Professor Lee Carkner Lecture 22.
Interference Physics 202 Professor Lee Carkner Lecture 24.
Copyright © 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction.
Reflection of Light Reflection and Refraction of Light Refraction of Light.
Geometric Optics Ray Model assume light travels in straight line
Geometric Optics Conceptual MC Questions. If the image distance is positive, the image formed is a (A) real image. (B) virtual image.
Lecture 14 Images Chapter 34. Law of Reflection Dispersion Snell’s Law Brewsters Angle Preliminary topics before mirrors and lenses.
1© Manhattan Press (H.K.) Ltd. Reflection Refraction Refraction 12.1 Reflection and refraction Total internal reflection Total internal reflection.
Light: Geometric Optics. Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Mirrors.
Lecture 14 Images Chp. 35 Opening Demo Topics –Plane mirror, Two parallel mirrors, Two plane mirrors at right angles –Spherical mirror/Plane mirror comparison.
Conceptual Physics: pp ; Chapter 30.  Refraction-The bending of a wave as it enters a new medium  Medium-The material the wave travels through.
Geometric Optics Conceptual Quiz 23.
Geometric Optics September 14, Areas of Optics Geometric Optics Light as a ray. Physical Optics Light as a wave. Quantum Optics Light as a particle.
Refraction is the change of direction of a light wave caused by a change in speed as the wave crosses a boundary between materials.
Optics 2: REFRACTION & LENSES. REFRACTION Refraction: is the bending of waves because of the change of speed of a wave when it passes from one medium.
Light refraction.
Refraction. As the speed of light is reduced in the slower medium, the wavelength is shortened proportionately. The frequency is unchanged; it is a characteristic.
Optics Review #1 LCHS Dr.E. When a light wave enters a new medium and is refracted, there must be a change in the light wave’s (A) color (B) frequency.
Reflection The law of reflection states that the angle of incidence is equal to the angle of reflection. All angles are taken from the normal line not.
Light Part 2. Reflection Occurs when waves traveling in one media reach a boundary with another media and bounce back into the first medium Total Reflection.
 When light strikes the surface of an object  Some light is reflected  The rest is absorbed (and transferred into thermal energy)  Shiny objects,
Chapter 24: Thin Films Diffraction Diffraction Grating.
PHENOMENA OF LIGHT Chapters 27, 29, & 31. Easy to get mixed up… Polarization (Light)Ch 27 Reflection (Water & Light)Ch 29 Refraction (Light)Ch 29 Dispersion.
(Objective(s): Warm up (write question and answer in your notebook) How does the size of the slits in a diffraction grating affect the pattern seen? Draw.
Test Corrections Due Tuesday, April 26 th Corrections must be done in a different ink color Lots of 4’s for effort – doesn’t mean answer is right! Check.
1 Light Chapters 36 – 39 2 Wave or Particle? Newton -- particles. In the early 19 th century, Young, Fresnel, and others -- wave. In 1860 Maxwell --
In describing the propagation of light as a wave we need to understand: wavefronts: a surface passing through points of a wave that have the same phase.
Optical Density - a property of a transparent medium that is an inverse measure of the speed of light through the medium. (how much a medium slows the.
1. How is the index of refraction calculated? How is light refracted as it speeds up? How is light refracted as it slows down? Index of refraction = speed.
Refraction Refraction happens when light moves from one medium to another (example: from air to glass) Wave slows down Bends towards the normal line Wavelength.
Reflection The law of reflection states that the angle of incidence is equal to the angle of reflection. All angles are taken from the normal line not.
Textbook sections 26-3 – 26-5, 26-8 Physics 1161: Lecture 17 Reflection & Refraction.
the change of direction of a ray of light as it passes obliquely from one medium into another of different transmission speed Optical Density of a medium.
Physics 11 Advanced Mr. Jean May 23 rd, The plan: Video clip of the day Wave Interference patterns Index of refraction Slit & Double Slit interference.
The law of reflection: The law of refraction: Image formation
 Mirrors that are formed from a section of a sphere.  Convex: The reflection takes place on the outer surface of the spherical shape  Concave: The.
Light refraction Chapter 29 in textbook.
Physics 102: Lecture 17, Slide 1 Physics 102: Lecture 17 Reflection and Refraction of Light.
Chapter 14.  The brain judges the object location to be the location from which the image light rays originate.
Index of Refraction. The ratio of the speed of light in vacuum to the speed of light v in a given material is called the index of refraction, n of the.
PHYSICS – Total Internal Reflection and Lenses. LEARNING OBJECTIVES Core Describe the formation of an optical image by a plane mirror, and give its characteristics.
Chapter 24 Wave Optics. Young’s Double Slit Experiment Thomas Young first demonstrated interference in light waves from two sources in Light is.
PHY 102: Lecture Index of Refraction 10.2 Total Internal Reflection 10.3 Prism and Rainbows 10.4 Lenses 10.5 Formation of Images 10.6 Lens Equations.
Speed of light In a vacuum, light travels at a speed of 3 x 10 8 m/s. In any other medium, such as air, water, glass, etc., light travels slower. MaterialSpeed.
Optics Reflection and Refraction Lenses. REFLECTIONREFRACTION DIFFRACTIONINTERFERENCE Fundamentals of Optics Continuum of wavesFinite no. of waves IMAGING.
Refraction and Lenses.
Reflection & Mirrors There are two kinds of mirrors Plane mirrors
Lens Equation ( < 0 ).
the change of direction of a ray of light
Geometric Optics Ray Model assume light travels in straight line
the change of direction of a ray of light
Reflection and Refraction
Refraction and Lenses.
Presentation transcript:

Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: Units Index of refraction of a medium equals the ratio of the speed of light in a vacuum and the speed of light in the medium Formula Units

Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: v=f Units m=1 m s s Index of refraction of a medium equals the ratio of the speed of light in a vacuum and the speed of light in the medium Formula Units

Waves and optics formula Velocity equals the product of the frequency and the wavelength Formula: v=f Units m=1 m s s Index of refraction of a medium equals the ratio of the speed of light in a vacuum and the speed of light in the medium Formula n = c v Units none=m/s m/s

Waves and optics formula Snell's law: the product of the index of refraction and the sin of the incident angle equals the product of the index of refraction of the second medium and the sin of the refracted angle n 1 sin  1 = n 2 sin  2 The sin of the critical angle ( Above this incident angle, will reflect, but will not refract ) equals the ratio of the index of refraction in the second medium and the index of refraction of the first medium Sin  c = n 2 n 1

Waves and optics formula Snell's law: the product of the index of refraction and the sin of the incident angle equals the product of the index of refraction of the second medium and the sin of the refracted angle n 1 sin  1 = n 2 sin  2 The sin of the critical angle ( Above this incident angle, will reflect, but will not refract ) equals the ratio of the index of refraction in the second medium and the index of refraction of the first medium Sin  c = n 2 n 1

Waves and optics formula Snell's law: the product of the index of refraction and the sin of the incident angle equals the product of the index of refraction of the second medium and the sin of the refracted angle n 1 sin  1 = n 2 sin  2 The sin of the critical angle ( Above this incident angle, will reflect, but will not refract ) equals the ratio of the index of refraction in the second medium and the index of refraction of the first medium Sin  c = n 2 n 1

Waves and optics formula Formula used for the relationships between image location, object location and the focal length of the lens or mirror = 1 s i s o f The magnification equals the ration of the image height to the object height or the negative ratio of the image location to the object location M = h i M = - s i h o s o

Waves and optics formula Formula used for the relationships between image location, object location and the focal length of the lens or mirror = 1 s i s o f The magnification equals the ration of the image height to the object height or the negative ratio of the image location to the object location M = h i M = - s i h o s o

Waves and Optics Formula The focal length equals the radius of curvature divided by 2 for lens and mirrors f = R 2

Waves and Optics Formula The focal length equals the radius of curvature divided by 2 for lens and mirrors f = R 2

Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin f = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin f = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin f = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin  = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin  = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin  = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin  = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

Waves and Optics Formula Interference formula single slit equals the d sin  = m  d = single slit width sin  = diffraction angle m = 1,2,.. Minima The position of x m ( 1,2 minima) equals product of the minima, wavelength, distance to screen divided by the slit width x m = m L d

Waves and Optics Formula Interference formula double or multiple slit equals the d sin  = m  d = distance between slits sin  = diffraction angle m = 1,2,.. Maxima The position of x m ( 1,2 maxima) equals product of the maxima, wavelength, distance to screen divided by the slit width x m = m L d

Plane Mirror

S o equals S i

Plane Mirror S o equals S i Image is upright, virtual, and same size

Plane Mirror S o equals S i Image is upright, virtual, and same size

Plane Mirror S o equals S i Image is upright, virtual, and same size

Plane Mirror So equals Si Image is upright, virtual, and same size

Plane Mirror

Image upright

Plane Mirror Image upright, virtual,

Plane Mirror Image upright, virtual, same size

Plane Mirror Block ½ mirror?

Plane Mirror Block ½ mirror? Image upright, virtual, same size

Plane Mirror Block ½ mirror? Image upright, virtual, same size Dimmer

Shadows

Elicpses – lunar, solar

Convex Mirror S o =10 cm

Convex Mirror S o =10 cm R=6cm f=3cm

Convex Mirror S o =10 cm R=6cm f=3cm

Concave Mirror S o =10 cm R=6cm f=+3cm

Concave Mirror

S i = 4.28 cm

Concave Mirror S i = 4.28 cm S o =10 cm R=6cm f=+3cm

Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Convex Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Convex Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =10 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller

Concave Mirror S i = 4.29 cm S o =6 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size

Concave Mirror S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger Parallel Rays

Concave Mirror S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger Parallel Rays - No Image

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = - (-15.0 cm) 2.5 cm M = Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Inverted Real Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Upright Virtual Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Upright Virtual Larger

Concave Mirror S i = 4.29 cm S o =2.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/2.5cm = 1/ si S i = cm M = - s i / s o = - (-15.0 cm) 2.5 cm M =+6.0 Upright Virtual Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Inverted Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Upright Real Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Upright Virtual Larger

Convex Mirror S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) - 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M = +.40 Upright Virtual Smaller

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident  refracted

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident  refracted n 1 d incident =n 2 d refracted

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident  refracted n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident  refracted n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident  refracted n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted =7.5 0 n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted

Refraction Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted =7.5 0 n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted n 1 = air = 1.0

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted =7.5 0 n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted n 1 = air = 1.0 Sin 10 o = n 2 = n water = 1.33 Sin 7.5 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted =7.5 0 n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted n 1 = air = 1.0 Sin 10 o = n 2 = n water = 1.33 Sin 7.5 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Index of Refraction (n) n 1 d incident =n 2 d refracted n 1 = air = 1.00 n 1 d incident = n 2 d refracted Therefore d incident / d refracted = n 2 Slope = 1.33=n 2 =n water water air  incident = 10 0  refracted =7.5 0 n 1 d incident =n 2 d refracted sin  incident =d incident radius sin   efracted = d refracted radius Therefore n 1 sin  i ncident =n 2 sin  refracted n 1 = air = 1.0 Sin 10 o = n 2 = n water = 1.33 Sin 7.5 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted = n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted = n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted = n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted = n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted = n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted = n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted = n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted = n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted = n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

Refraction-Snell’s Law Incident Ray Distance to normal 1.33 cm 2.00 cm 2.66 cm 3.33 cm 4.00 cm Refracted Distance to Normal 1.00 cm 1.50 cm 2.00 cm 2.50 cm 3.00 cm Therefore d incident / d refracted = n 2 water air  incident = 10 0  refracted = n 1 sin  i ncident =n 2 sin  refracted n 2 = air = 1.0 n 1 = n water = sin   efracted sin   ncident sin 13.5 o = n 1 = n water = 1.34 sin 10.0 o

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r n air = 1.0 N glass 1.3

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r velocity of light decreases v = c n Frequency remains the same n = vacuum n n glass = 1.3 n air = 1.0

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r velocity of light decreases v = c n Frequency remains the same n = vacuum n n air = 1.0 n glass = 1.3

Refraction incident   Normal refracted  r incident   refracted  r Towards normal when n i < n r (n=index of refraction or optical density ) Away from normal when n i > n r velocity of light decreases v = c n Frequency remains the same n = vacuum n n air =1.0 n glass = 1.3

Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

Refraction incident   Normal refracted  r incident   refracted  r Away from normal when n i > n r (n=index of refraction or optical density ) Toward normal when n i > n r velocity of light decreases v = c n

Snell’s Law Incident  = 10 o Refracted  = 6.5 o n 1 for air = 1.0 n 2 = ? n 1 sin  i = n 2 sin  2 n 1 sin  i = n 2 = 1.0 sin 10 o =1.5 sin  2 sin 6.5 0

Snell’s Law Incident  = 15 o Refracted  = 9.2 o n 1 for air = 1.0 n 2 = ? n 1 sin  i = n 2 sin  2 n 1 sin  i = n 2 = 1.0 sin 10 o =1.5 sin  2 sin 9.2 0

Snell’s Law Incident  = 20 o Refracted  = 16.1 o n 1 for air = 1.0 n 2 = ? n 1 sin  i = n 2 sin  2 n 1 sin  i = n 2 = 1.0 sin 20 o =1.5 sin  2 sin

Snell’s Law Incident  = 10.0 o Refracted  = 15.4 o n 1 = ? n 2 = 1.0 (air) n 1 sin  i = n 2 sin  2 n 1 = n 2 sin  2 = = 1.0 sin =1.5 sin  1 sin

Snell’s Law Incident  = 15.0 o Refracted  = 23.3 o n 1 = ? n 2 = 1.0 (air) n 1 sin  i = n 2 sin  2 n 1 = n 2 sin  2 = = 1.0 sin =1.5 sin  1 sin

Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin  i = n 2 sin  2

Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin  i = n 2 sin  2

Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin  i = n 2 sin  2

Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 =1.0 n  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin  i = n 2 sin  2

Snell’s Law Incident  = 20.0 o Refracted  = 31.6 o n 1 = ? n 2 = 1.0 (air) n 1 sin  i = n 2 sin  2 n 1 = n 2 sin  2 = = 1.0 sin =1.5 sin  1 sin

Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o Refracted  = 31.6 o n 1 = ? n 2 = 1.0 (air) n 1 sin  i = n 2 sin  2

Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o Any incident angle above that critical angle will only reflect n 1 sin  i = n 2 sin  2

Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin  i = n 2 sin  2

Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin  i = n 2 sin  2

Critical Angle- Total Internal Reflection Incident  = ? If n 1 =1.5 n 2 =n air =1.0 sin  c = n 2 n 1  c = 42 o The larger the difference between n 2 and n 1 the smaller the ratio and the lower the critical angle n 1 sin  i = n 2 sin  2

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o o

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o o Law of Reflection

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o How would the reflection and refraction be different ?

15 0 Law of Reflection 10.7 o Snell’s law – Refraction n 1 sin  1 = n 2 sin  2 n 1 sin  1 = sin  2 n 2 1.0sin 15 0 = sin  o =  2 Snell’s law – Refraction n 1 sin f 1 = n 2 sin f 2 n 1 sin f 1 = sin f 2 n 2 1.4sin 36 0 = sin  o =  2 36 o 45.6 o How would the reflection and refraction be different ?

S o =9.0 cm R=6cm f=+3cm Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller S o =9.0 cm R=6cm f= +3cm

Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller S o =9.0 cm R=6cm f= +3cm

Converging Lens S i = 4.29 cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller S o =9.0 cm R=6cm f= +3cm

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/10cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.29 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 10 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =9.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/9cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 4.5 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 9.0 cm M = -.50 Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Smaller

Converging Lens S i = 4.29 cm S o =6.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm - 1/6cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 6.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 6.0 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Same Size

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = Inverted Real Larger

Converging Lens S i = 4.29 cm S o =3.0 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/4.5cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = 9.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = cm 4.5 cm M = No Image- Parallel RaysReal Larger

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = No Image- Parallel RaysReal Larger

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual

Converging Lens S i = 4.29 cm S o =2.1 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f=+3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/3cm – 1/2.1cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = Upright Virtual Larger

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -7.0 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-7.0 cm 2.1 cm M = +3.33

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Larger 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40

Converging Lens S i = 4.29 cm S o =4.5 cm R=6cm f= - 3cm Upright Virtual Smaller 1/f = 1/s o + 1/s i 1/f-1/s o = 1/s i 1/(-3cm) – 1/4.5cm = 1/ si S i = -1.8 cm M = - s i / s o = - (-1.8 cm 4.5 cm M =.40

Compound Optical Instruement d o =___? h= ____ f 1 =___ cm f 2 = ___ cm 1.Measure d o, f 1,,f 2 h and draw rays to determine initial and final d i 2.Calculate initial and final d i positions 3.Measure final h and determine magnification by drawing and by calculations

Compound Microscope

S o =29 h=.67 f=15 S i =31 M=31/29 M=1.07 H=.75

Compound Microscope f e =26 S o =17

Compound Microscope

Compound Optical Instruement f=26 S o =17 h=.75 S i =-49 h = 2.0 M=49/17 M=2.9

Compound Microscope

Diffraction Path length differences produce constructive Interference if path length difference is a whole number multiples of the wavelength Destructive Interference will occur if path length difference is multiples of ½ of a wavelength

Diffraction Path length differences produce constructive Interference if path length difference is a whole number multiples of the wavelength Destructive Interference will occur if path length difference is multiples of ½ of a wavelength

Diffraction Path length differences produce constructive Interference if path length difference is a whole number multiples of the wavelength Destructive Interference will occur if path length difference is multiples of ½ of a wavelength

Single Slit Interference

Single Slit  max min

Single Slit  max min 

Single Slit  max Min 

Single Slit  max min

Single Slit Diffraction 

 

 

 

  d Sin  = opp = m hyp d m = 0,1,2… for minima

Single Slit Diffraction   d Sin  = opp = m hyp d m = 0,1,2… for minima

Single Slit Diffraction   d Sin  = opp = m hyp d m = 0,1,2… for minima

Single Slit Diffraction   d Sin  = opp = m hyp d m = 0,1,2… for minima

Single Slit Diffraction   d Sin  = opp = m hyp d m = 0,1,2… for minima

Single Slit Diffraction   d Sin  = opp = m hyp d m = 1,2… for minima

Single Slit Diffraction   d Sin  = opp = m hyp d m = 1,2… for minima

Single Slit Diffraction   Sin  = opp = m hyp d m = 1,2… for minima

Single Slit  max min

Single Slit  max min L = distance to screen

Single Slit  max min L = distance to screen xmxm X m distance To minima

Single Slit  max min Tan  = x m L xmxm X m distance To minima

Single Slit  max min Tan  = x m L xmxm X m distance To minima Sin  = m d

Single Slit  max min Tan  = x m L xmxm X m distance To minima Sin  = m d Tan  = sin 

Single Slit  max min Tan  = x m L xmxm X m distance To minima Sin  = m d Tan  = sin  X m = m L d

Young’s Double Slit Experiment

Max

Young’s Double Slit Experiment Max

Young’s Double Slit Experiment Max

Young’s Double Slit Experiment Max

Young’s Double Slit Experiment Max

Young’s Double Slit Experiment Max

Young’s Double Slit Experiment Max

Young’s Double Slit Experiment Max 

Young’s Double Slit Experiment Max  

Young’s Double Slit Experiment Max   Sin  = m = xm d L Length (L) to screen

Young’s Double Slit Experiment Max   Sin  = m = xm d L Length (L) to screen

Young’s Double Slit Experiment Max   Sin  = m = xm d L Length (L) to screen xmxm

Young’s Double Slit Experiment Max   Sin  = m = xm d L Length (L) to screen xmxm

Young’s Double Slit Experiment Max   Sin  = m = x m = tan  d L = x m d m L Length (L) to screen xmxm

Multiple Slit Diffraction Sin  = m = x m d L = x m d m L m = 0, 1,2, 3 … max

Multiple Slit Diffraction Sin  = m = x m d L = x m d m L m = 0, 1,2, 3 … max

Multiple Slit Diffraction Sin  = m = x m d L = x m d m L m = 0, 1,2, 3 … max

Multiple Slit Diffraction Sin  = m = x m d L = x m d m L m = 0, 1,2, 3 … max

Multiple Slit Diffraction Sin  = m = x m = tan  d L = x m d m L m L d m = 0, 1,2, 3 … max

Multiple Slit Diffraction Sin  = m = x m = tan  d L = x m d m L  x m m L d m = 0, 1,2, 3 … max

Single, Double, Multiple Slit Diffraction

Based on constructive and destructive interference

Single, Double, Multiple Slit Diffraction Based on constructive and destructive interference Caused by path length differences

Single, Double, Multiple Slit Diffraction Based on constructive and destructive interference Caused by path length differences Geometry based on sin  = m  x m =tan  d L

Single, Double, Multiple Slit Diffraction Based on constructive and destructive interference Caused by path length differences Geometry based on sin  = m  x m d L Single Slit m is for minima with broad central maxima Double / Multiple m is for maximum

Reflection-Interference, Newton’s Rings, Thin Film Interference Higher Index of Refraction Lower Index of Refraction

Reflection-Interference, Newton’s Rings, Thin Film Interference Higher Index of Refraction Lower Index of Refraction Relected ray experience a half wavelength phase change

Reflection-Interference, Newton’s Rings, Thin Film Interference

Higher Index of Refraction Lower Index of Refraction

Reflection-Interference, Newton’s Rings, Thin Film Interference Higher Index of Refraction Lower Index of Refraction No phase change occurs

Air Wedge Reflection-Interference Hair

Air Wedge Reflection-Interference

Air Glass

Air Wedge Reflection-Interference

Phase change reflection

Air Wedge Reflection-Interference Phase change reflection – – n air < n glass

Air Wedge Reflection-Interference

Towards normal refraction

Air Wedge Reflection-Interference Towards normal refraction n air < n glass

Air Wedge Reflection-Interference

No phase change reflection n glass >n air

Air Wedge Reflection-Interference

Away from normal refraction

Air Wedge Reflection-Interference Away from normal refraction – n glass > n air

Air Wedge Reflection-Interference

Away from normal refraction

Air Wedge Reflection-Interference Away from normal refraction n glass > n air speeds up

Air Wedge Reflection-Interference

Phase change reflection

Air Wedge Reflection-Interference Phase change reflection n air < n glass

Air Wedge Reflection-Interference

Towards normal refraction

Air Wedge Reflection-Interference Towards normal refraction n air < n glass

Air Wedge Reflection-Interference Towards normal

Air Wedge Reflection-Interference Away from normal refraction

Air Wedge Reflection-Interference Away from normal Refraction n glass > n air

Air Wedge Reflection-Interference Towards normal No Phase Change Away from normal Away from normal Phase Change Toward Normal Phase Change Away from normal

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d ½ + 2d = D l

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change If the path length of the light that is transmitted through the upper glass plate, then reflected off the air glass interference of the bottom plate with 180 degree phase reversal,then transmitted through the upper plate is multiples of ½ of a the path length of the light that is refracts through the upper glass plate, then reflects off the upper glass air interference without a phase change will interfer constructively.

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d ½ + 2d = D l d = distance between the plates

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d ½ + 2d = D l

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½ + d ½ + 2d = D l

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½ + d ½ + 2d = D l

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference = n

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference = n

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference =  l =m = ½ + 2d m=1/2 + 2 d

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference =  l =m = ½ + 2d m=1/2 + 2 d

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference =  l =m = ½ + 2d m=1/2 + 2 d

Air Wedge Reflection-Interference Towards normalNo Phase Change Away from normal Away from normal Phase Change Toward Normal Away from normal No Phase Change Phase Change  l = d + ½  + d  l = ½ + 2d Constructive Interference =  l =m = ½ + 2d 1/2 + 2 d

Thin Film Interference Antiflective coating with an index of refraction Greater than air but less than the glass lens n air =1.0 n thin film = 1.3 n glass = 1.7

Thin Film Interference

Effective refracted ray path length= thickness down * index of refraction because the wavelength decreases as it enters the higher index of refraction of the medium added to to thickness up * index of refraction added to ½ wavelength due to phase refersal. l effrr = nt + nt + ½ l effrr = 2nt+ ½ Reflected ray l effr = ½ Constructive inteference occurs at whole multiples of wavelength path length differences. Therefore in this case the refracted,reflected,refracted ray will show constructive interference if 2nt = m  t = m  approxiamately  2n Destructive interference occurs at ½ whole multiples of wavelength path length differences Therefore in this case the refracted,reflected,refracted ray will show destructive interference If 2nt = m  t=m  approxiamately 2 4n n =1.0 n thin film = 1.3

Thin Film Interference Antiflective coating with an index of refraction Greater than and the glass lens n air =1.0 n thin film = 1.6 n glass = 1.4

Thin Film Interference

Effective refracted ray path length= thickness down * index of refraction because the wavelength decreases as it enters the higher index of refraction of the medium added to to thickness up * index of refraction l effrr = nt + nt l effrr = 2nt Reflected ray l effr = ½ Constructive inteference occurs at whole multiples of wavelength path length differences. Therefore in this case the refracted,reflected,refracted ray will show constructive interference if 2nt = m  - ½  t = m +1/2  t = (m+1/2)  2n 2n Destructive interference occurs at ½ whole multiples of wavelength path length differences Therefore in this case the refracted,reflected,refracted ray will show destructive interference If 2nt = m  t = m +  2 4n 4n n =1.0 n thin film = 1.3

Thin Film Interference Effective refracted ray path length= thickness down * index of refraction because the wavelength decreases as it enters the higher index of refraction of the medium added to to thickness up * index of refraction added to ½ wavelength due to phase refersal. l effrr = nt + nt + ½ l effrr = 2nt+ ½ Reflected ray l effr = ½ Constructive inteference occurs at whole multiples of wavelength path length differences. Therefore in this case the refracted,reflected,refracted ray will show constructive interference if 2nt = m  t = m  2n Destructive interference occurs at ½ whole multiples of wavelength path length differences Therefore in this case the refracted,reflected,refracted ray will show destructive interference If 2nt = m  t=m 2 4n n =1.0 n thin film = 1.3

Thin film interference n 1 = air n 2 =1.33

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n

Thin film interference n 1 =1.00 n 2 =1.33 n 3 =1.50 m = 2 n t m = t (thickness of film) 2n If l was 4.8 x10 -7 m what would the miniumum thickness need to cause Constructive interference? If l was 4.8 x10 -7 m what would the miniumum thickness need to cause Destructive interference?

Summary Constructive interference – pathlength equals m Destructive interference – pathlength equal m 2 If n 1 n 3 or n 1 >n 2 <n 3 than t = (m+1/2)  constructive 2n If n 1 n 3 or n 1 >n 2 <n 3 than t = (m+1/2)  destructive 4n

Summary Constructive interference – pathlength equals m Destructive interference – pathlength equal m 2 If n 1 n 2 >n 3 than t = m  constructive 2n If n 1 n 2 >n 3 than t = m  destructive 4n