Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National.

Slides:



Advertisements
Similar presentations
Gate Control of Spin Transport in Multilayer Graphene
Advertisements

Mitglied der Helmholtz-Gemeinschaft Giorgi Khazaradze Tbilisi, July10, 2014 Study of hexaferrite Ba 0.6 Sr 1.4 Zn 2 Fe 12 O 22 by EPR technique.
JAIRO SINOVA Research fueled by: New Horizons in Condensed Matter Physics Aspen Center for Physics February 4 th 2008 Theory challenges of semiconducting.
New Directions in Energy Research or a Magnetic Quirk?
Dynamics of Vibrational Excitation in the C 60 - Single Molecule Transistor Aniruddha Chakraborty Department of Inorganic and Physical Chemistry Indian.
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Hot Electron Energy Relaxation In AlGaN/GaN Heterostructures 1 School Of Physics And Astronomy, University of Nottingham, University Park, Nottingham,
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK. Electrically pumped terahertz SASER device using a weakly coupled AlAs/GaAs.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Spin transport in spin-orbit coupled bands
Hiroyuki Inoue Electric manipulation of spin relaxation in a film using spin-Hall effect K. Ando et al (PRL in press)
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Magnetic sensors and logic gates Ling Zhou EE698A.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Les Houches, June 2006.
Optical spin transfer in GaAs:Mn Joaquin Fernandez-Rossier, Department of Applied Physics, University of Alicante (SPAIN) CECAM June 2003, Lyon (FR) cond-mat/
Optical study of Spintronics in III-V semiconductors
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
School of Physics and Astronomy, University of Nottingham, UK
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Spintronics and Graphene  Spin Valves and Giant Magnetoresistance  Graphene spin valves  Coherent spin valves with graphene.
Spin-dependent transport in the presence of spin-orbit interaction L.Y. Wang a ( 王律堯 ), C.S. Tang b and C.S. Chu a a Department of Electrophysics, NCTU.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Introduction to spin-polarized ballistic hot electron injection and detection in silicon by Ian Appelbaum Philosophical Transactions A Volume 369(1951):
Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.
Observation of the spin-Hall Effect Soichiro Sasaki Suzuki-Kusakabe Lab. Graduate School of Engineering Science Osaka University M1 Colloquium.
TOROIDAL RESPONSE IN DIELECTRIC METAMATERIALS
Sebastian T. B. Goennenwein Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften M. Althammer, F. D. Czeschka, J. Lotze, S. Meyer, M. Schreier,
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Nripen Dhar p Outlines of Presentation Discovery Principles Importance Existing measurement system Applications New Discoveries 2.
Magnetization dynamics
Research fueled by: 8th International Workshop on Nanomagnetism & Superconductivity Coma-ruga July 2 nd, 2012 Expecting the unexpected in the spin Hall.
 Ferromagnetism  Inhomogenous magnetization  Magnetic vortices  Dynamics  Spin transport Magnetism on the Move US-Spain Workshop on Nanomaterials.
Daresbury Laboratory Ferromagnetism of Transition Metal doped TiN S.C. Lee 1,2, K.R. Lee 1, K.H. Lee 1, Z. Szotek 2, W. Temmerman 2 1 Future Technology.
APS -- March Meeting 2011 Graphene nanoelectronics from ab initio theory Jesse Maassen, Wei Ji and Hong Guo Department of Physics, McGill University, Montreal,
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Introduction to Spintronics
Microscopic theory of spin transport
LaBella Group cnse.albany.edu Towards an Atomic Scale Understanding of Spin Polarized Electron Transport Towards.
Spin-diffusion, T c suppression and proximity effect in ferromagnet/superconductor (LCMO/YBCO) bilayers and trilayers Norbert M. Nemes Seminario Alternativo,
Bulk Hybridization Gap and Surface Conduction in the Kondo Insulator SmB 6 Richard L. Greene, University of Maryland College Park, DMR Recently,
Fowler-Nordheim Tunneling in TiO2 for room temperature operation of the Vertical Metal Insulator Semiconductor Tunneling Transistor (VMISTT) Lit Ho Chong,Kanad.
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Spin-orbit interaction in semiconductor quantum dots systems
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
Switching with Ultrafast Magnetic Field Pulses Ioan Tudosa.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
C 60 - Single Molecule Transistor Aniruddha Chakraborty Indian Institute of Technology Mandi, Mandi , Himachal Pradesh, India.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Experiments to probe the inverse Spin-Hall Effect in GaAs U. Pfeuffer, R. Neumann, D. Schuh, W. Wegscheider, D. Weiss 7. June 2008 University of Regensburg.
Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge W. S. Cho and J. A. C. Bland Cavendish Laboratory, University of Cambridge, UK.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Time-Resolved X-ray Absorption Spectroscopy of Warm Dense Matter J.W. Lee 1,2,6, L.J. Bae 1,2, K. Engelhorn 3, B. Barbel 3, P. Heimann 4, Y. Ping 5, A.
Orbitally phase coherent spintronics
Spin-Orbit Torques from Interfacial Rashba-Edelstein Effects
Polarization Dependence in X-ray Spectroscopy and Scattering
Translating Spin Seebeck Effect Physics into Practice
6NHMFL, Florida State University, Tallahassee, Florida 32310, USA
Magnetic force resonance microscopy
P. He1,4, X. Ma2, J. W. Zhang4, H. B. Zhao2,3, G. Lupke2, Z
Information Storage and Spintronics 18
Presentation transcript:

Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National Laboratory 10 nm spincharge

2 Thanks to Goran Mihajlović, Oleksandr Mosendz, Yi Ji, John E. Pearson, Frank Y. Fradin, J. Sam Jiang, and Sam D. Bader Materials Science Division and Center for Nanoscale Materials Argonne National Laboratory Miguel A. Garcia Departamento Física de Materiales, Universidad Complutense de Madrid Gerrit E. W. Bauer Kavli Institute of NanoScience, Delft University of Technology Peter Fischer and Mi-Young Im Center for X-ray Optics, Lawrence Berkeley National Laboratory $$$ Financial Support $$$ DOE-BES

3 Outline Why Pure Spin Currents? Electrical Injection Spin Hall Effect Spin Pumping Conclusions 10 nm spincharge 1  m IV

4 Spintronics Putting into Electronics Novel Devices Nobel Prize New Physics

5 Charge vs. Spin Currents Charge Spin J. Shi, et al., Phys. Rev. Lett. 96, (2006). Moving Spins Spin Dynamics No Need for Moving Spin: Potential for Low Power Dissipation!

Courtesy Claude Chappert, Université Paris Sud

7 New Goal:

8 Can we generate pure spin-currents in paramagnetic materials? Non-local geometries Spin-dependent scattering (Spin-Hall) Spin pumping

9 Pure Spin Currents: The Johnson Transistor F1F1 F2F2 N V e- L F1N F2 EmitterBase or Collector M. Johnson, Science 260, 320 (1993) M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985) 0 F2 F2F2 First Experimental Demonstrations M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985) Bulk Al: s = 450  m (4.2 K) I+I+ I-I- V Jedema et al., Nature 410, 345 (2001) Cu film: s = 1  m (4.2 K)

10 Lateral Spin-Valve with Gold Y. Ji, et al., Appl. Phys. Lett. 85, 6218 (2004) a.c. current source Lock-in detection s = 63  15 nm In gold at 10 K

11 Lateral Spin-Valve with Copper 500 nm Shadow Evaporation SEM Image Finished Device Y. Ji, et al., Appl. Phys. Lett. 88, (2006)

12 Spin Diffusion Length in Copper T = 10 K Y. Ji, et al., Appl. Phys. Lett. 88, (2006) P = 7%

13 Spin-Signal at Room Temperature L = 300 nm, T = 10 KL = 350 nm, T = 300 K Co/Cu Lateral Spin-Valve s ≈ 110 nm at room temperature

14 Spin Hall Effect Spin-dependent scattering gives rise to transverse spin imbalance of charge currents Direct observation in GaAs with optical detection Y. K. Kato et al., Science 306, 1910 (2004) J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999) M. I. Dyakonov and V. I. Perel, JETP Lett. 13, 467 (1971)

15 Spin-Skew Scattering + - nucleus electron E B ---

16 Spin Hall vs. Inverse Spin Hall Spin Hall Charge Current  Transverse Spin Imbalance Inverse Spin Hall Spin Current  Transverse Charge Imbalance Spin Dependent Scattering

17 Spin Hall Angle understanding the effect of SO coupling on electron transport recognizing materials for spintronics applications Importance: spin Hall conductivity charge conductivity stronger spin orbit interaction larger Goal: experiments to quantify

18 Quantifying Spin Hall Angle in Metals = Al: S. O. Valenzuela & M. Tinkham, Nature 442, 176 (2006) T. Kimura et al., PRL 98, (2007) T. Seki et al., Nature Mater. 7, 125 (2008) Magnetotransport measurements: Ferromagnetic resonance: = Pt: = Au: K. Ando et al., PRL 101, (2008) = 0.08 Pt: Large discrepancies in  values ! Ferromagnets always used to generate/detect spin currents need to know spin polarization efficiency at injector/detector E. Saitoh et al., APL 88, (2006) How about Spin Hall effects without ferromagnets! possible spurious signals: Hall, Anomalous Hall, MR

19 Charge Current Teleportation Theoretical Idea: Use Spin Hall Effects Twice! Direct Spin Hall Effect Generate Pure Spin Current Inverse Spin Hall Effect Detect Pure Spin Current L D. A. Abanin et al., Phys. Rev. B 79, (2009) J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999) E. M. Hankiewicz et al., Phys. Rev. B 70, (R) (2004) M. I. Dyakonov, Phys. Rev. Lett. 99, (2007)

20 Gold Hall Bar Structures 1 µm w = 110 nm t = 60 nm 5 μm Spin Hall Angle in Gold: < 0.02 Too small to be practically useful! Mihajlović et al., Phys. Rev. Lett. 103, (2009)

21 Unusual Application of Spin Dynamics As found in: Queen Victoria Pub, Durham, U. K.

22 Spin Pumping Ferromagnetic Resonance results in time-dependent interfacial spin accumulation This spin accumulation diffuses away from the interface Results in net dc spin current perpendicular to interface Additional spin current gives rise to additional damping Quantify spin current from linewidth broadening FN ISIS

23 Combine Spin Pumping and Inverse Hall Effect Use Spin Pumping to Generate Pure Spin Current Quantify Spin Current from FMR Measured Voltage Directly Determines Spin Hall Conductivity Key Advantage: Signal Scales with Device Dimension

24 Determine Spin Hall Angle for Many Materials Pt AuMo  = ± Technique easily adapted to any material!  = ±  = ±

Can we Image Spin Accumulation Directly? 25 How about X-ray Dichroism? Image at Cu L-edge Magnetic Difference Images Mosendz et al., Phys. Rev. B 80, (2009)

Is There Any Hope for X-Rays? 26 s d E N(E) Ferromagnet (i.e., typical TM) Contrast due to different density of states at Fermi-level s d E N(E) Spin Accumulation Contrast due to spin-splitting? Well below 1 meV!

27 Conclusions Spin Currents behave different compared to Charge Currents –Possibility of Reduced Power Dissipation Non-Local Electrical Injection –Generate Pure Spin Currents –Study Spin Relaxation Spin Hall Effects –Generate and Detect Spin Currents w/o Ferromagnets Spin Pumping –Generate Spin Currents w/o Electric Charge Currents 10 nm spincharge 1  m IV