1 EGRE 426 Fall 09 Handout 02. 2 Pipeline examples continued from last class.

Slides:



Advertisements
Similar presentations
Henk Corporaal TUEindhoven 2011
Advertisements

Goal: Write Programs in Assembly
Review of the MIPS Instruction Set Architecture. RISC Instruction Set Basics All operations on data apply to data in registers and typically change the.
1 ECE462/562 ISA and Datapath Review Ali Akoglu. 2 Instruction Set Architecture A very important abstraction –interface between hardware and low-level.
1 ECE369 ECE369 Chapter 2. 2 ECE369 Instruction Set Architecture A very important abstraction –interface between hardware and low-level software –standardizes.
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 5 MIPS ISA & Assembly Language Programming.
CS3350B Computer Architecture Winter 2015 Lecture 4
Systems Architecture Lecture 5: MIPS Instruction Set
1 INSTRUCTIONS: LANGUAGE OF THE MACHINE CHAPTER 3.
Chapter 2 Instructions: Language of the Computer
Chapter 2.
1 Chapter 3: Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g.,
1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic.
1 Chapter Introduction Language of the Machine We’ll be working with the MIPS instruction set architecture –similar to other architectures developed.
ENEE350 Spring07 1 Ankur Srivastava University of Maryland, College Park Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005.”
1 CSE SUNY New Paltz Chapter 3 Machine Language Instructions.
S. Barua – CPSC 440 CHAPTER 2 INSTRUCTIONS: LANGUAGE OF THE COMPUTER Goals – To get familiar with.
Recap.
Lecture 5 Sept 14 Goals: Chapter 2 continued MIPS assembly language instruction formats translating c into MIPS - examples.
1  1998 Morgan Kaufmann Publishers Chapter 3 Text in blue is by N. Guydosh Updated 1/27/04 Instructions: Language of the Machine.
Text-book Slides Chapters 1-2 Prepared by the publisher (We have not necessarily followed the same order)
1  2004 Morgan Kaufmann Publishers Chapter 2. 2  2004 Morgan Kaufmann Publishers Instructions: Language of the Machine We’ll be working with the MIPS.
©UCB CPSC 161 Lecture 5 Prof. L.N. Bhuyan
ISA-2 CSCE430/830 MIPS: Case Study of Instruction Set Architecture CSCE430/830 Computer Architecture Instructor: Hong Jiang Courtesy of Prof. Yifeng Zhu.
Computing Systems Instructions: language of the computer.
CDA 3101 Fall 2012 Introduction to Computer Organization Instruction Set Architecture MIPS Instruction Format 04 Sept 2013.
Spr 2015, Jan ELEC / Lecture 3 1 ELEC / Computer Architecture and Design Spring 2015 Instruction Set Architecture.
1  2004 Morgan Kaufmann Publishers Instructions: bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5 beq $t4,$t5,Label Next instruction is at Label.
순천향대학교 정보기술공학부 이 상 정 1 2. Instructions: Language of the Computer.
1 CS/EE 362 Hardware Fundamentals Lecture 10 (Chapter 3: Hennessy and Patterson) Winter Quarter 1998 Chris Myers.
1 (Based on text: David A. Patterson & John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 3 rd Ed., Morgan Kaufmann,
1  1998 Morgan Kaufmann Publishers Machine Instructions: Language of the Machine Lowest level of programming, control directly the hardware Assembly instructions.
6.S078 - Computer Architecture: A Constructive Approach Introduction to SMIPS Li-Shiuan Peh Computer Science & Artificial Intelligence Lab. Massachusetts.
Computer Architecture (CS 207 D) Instruction Set Architecture ISA.
Oct. 25, 2000Systems Architecture I1 Systems Architecture I (CS ) Lecture 9: Alternative Instruction Sets * Jeremy R. Johnson Wed. Oct. 25, 2000.
Small constants are used quite frequently (50% of operands) e.g., A = A + 5; B = B + 1; C = C - 18; Solutions? Why not? put 'typical constants' in memory.
 1998 Morgan Kaufmann Publishers MIPS arithmetic All instructions have 3 operands Operand order is fixed (destination first) Example: C code: A = B +
RISC Processor Design RISC Instruction Set Virendra Singh Indian Institute of Science Bangalore Lecture 8 SE-273: Processor Design.
Chapter 2 CSF 2009 The MIPS Assembly Language. Stored Program Computers Instructions represented in binary, just like data Instructions and data stored.
Computer Organization CS224 Fall 2012 Lessons 7 and 8.
Computer Organization Rabie A. Ramadan Lecture 3.
EE472 – Spring 2007P. Chiang, with Slide Help from C. Kozyrakis (Stanford) ECE472 Computer Architecture Lecture #3—Oct. 2, 2007 Patrick Chiang TA: Kang-Min.
MIPS Instructions Instructions: Language of the Machine
DR. SIMING LIU SPRING 2016 COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF NEVADA, RENO Session 7, 8 Instruction Set Architecture.
Instruction Set Architecture Chapter 3 – P & H. Introduction Instruction set architecture interface between programmer and CPU Good ISA makes program.
1  1998 Morgan Kaufmann Publishers Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow.
Fall 2014, Aug ELEC / Lecture 3 1 ELEC / Computer Architecture and Design Fall 2014 Instruction Set Architecture.
CHAPTER 2 Instruction Set Architecture 3/21/
1 ECE3055 Computer Architecture and Operating Systems Lecture 3 MIPS ISA Prof. Hsien-Hsin Sean Lee School of Electrical and Computer Engineering Georgia.
Computer Architecture & Operations I
Computer Architecture & Operations I
ECE3055 Computer Architecture and Operating Systems Chapter 2: Procedure Calls & System Software These lecture notes are adapted from those of Professor.
MIPS Instruction Set Advantages
Preliminary Computer Organization and Design 3rd edition, Designers Guide to VHDL. 1.
Instruction Set Architecture
Computer Architecture (CS 207 D) Instruction Set Architecture ISA
Instructions - Type and Format
CS170 Computer Organization and Architecture I
Systems Architecture I (CS ) Lecture 5: MIPS Instruction Set*
Systems Architecture Lecture 5: MIPS Instruction Set
Henk Corporaal TUEindhoven 2010
ECE232: Hardware Organization and Design
September 24 Test 1 review More programming
Computer Architecture
September 17 Test 1 pre(re)view Fang-Yi will demonstrate Spim
COMS 361 Computer Organization
COMS 361 Computer Organization
COMS 361 Computer Organization
Machine Instructions.
Systems Architecture I (CS ) Lecture 5: MIPS Instruction Set*
Presentation transcript:

1 EGRE 426 Fall 09 Handout 02

2 Pipeline examples continued from last class.

3

4

5

6

7 Using a four segment pipeline with the restriction that the pipeline must empty before a new type (add, multiply, etc.) of operation can begin. T 4 (4) = 16 segment times.

8 Using a four segment pipeline which does not require that the pipeline empty before a new type of operation can begin. T 4 (4)=15 segment times.

9 Chapter 2 The Mips processor In this class we will focus on the Mips processor. The Mips processor is an example of a reduced instruction set computer (RISC). Hennessy and Patterson were early advocates of RISC architecture and were responsible for much of the early development of RISC concepts. Hennessy left Stanford to found MIPS Computer Systems. The first commercial Mips processor was introduced in The Mips is used in a number of embedded systems including game consoles. We will concentrate on an older 32 bit version of the Mips. 64 bit SIMD versions of Mips processors are available. The impact of the Mips has been significantly reduced by the prevalence of the Intel X86 processors (CISC).

10 Instructions: Language of the Machine We’ll be working with the MIPS instruction set architecture –similar to other architectures developed since the 1980's RISC architecture –Almost 100 million MIPS processors manufactured in 2002 –used by NEC, Nintendo, Cisco, Silicon Graphics, Sony, …

11 MIPS arithmetic All instructions have 3 operands Operand order is fixed (destination first) Example: C code: a = b + c MIPS ‘code’: add a, b, c # a  b + c (we’ll talk about registers in a bit) “The natural number of operands for an operation like addition is three…requiring every instruction to have exactly three operands, no more and no less, conforms to the philosophy of keeping the hardware simple” However, note that two operands are typical on most computers –Add a, b # a  a + b comment

12 MIPS arithmetic Design Principle: simplicity favors regularity. Of course this complicates some things... C code: a = b + c + d; MIPS code: add a, b, c add a, a, d On the Mips operands must be registers, only 32 registers provided Each register contains 32 bits Design Principle: smaller is faster. Why?

13 Registers vs. Memory ProcessorI/O Control Datapath Memory Input Output Arithmetic instructions operands must be registers, — only 32 registers provided Compiler associates variables with registers What about programs with lots of variables? –Use memory

14 Memory Organization Viewed as a large, single-dimension array, with an address. A memory address is an index into the array "Byte addressing" means that the index points to a byte of memory bits of data A 32 bit word consists of 4 bytes aligned as shown below. The address of the word points to the most significant byte of the word (Big endian). Addresses Bytes

15 Memory Organization Byte addressing is used, but most data items use "words" For MIPS, a word is 32 bits or 4 bytes bytes with byte addresses from 0 to words with byte addresses 0, 4, 8, Words are aligned i.e., what are the least 2 significant bits of a word address? bits of data Registers hold 32 bits of data

16 add $4, $5, $9 Assembler also recognizes add $a0, $a1, $t1

17 Instructions Load and store instructions Example: C code: A[12] = h + A[8]; MIPS code: lw $t0, 32($s3) # $t0  M($s3+32) add $t0, $s2, $t0 # $t0  $s2 + $t0 sw $t0, 48($s3) # ? Can refer to registers by name (e.g., $s2, $t2) instead of number Store word has destination last Remember arithmetic operands are registers, not memory! Can’t write: add 48($s3), $s2, 32($s3) Why 32?

18

19

20

21

22

23

24

25

26 Our First Example Can we figure out the code? swap(int v[], int k); { int temp; temp = v[k] v[k] = v[k+1]; v[k+1] = temp; } swap: muli $2, $5, 4 add $2, $4, $2 lw $15, 0($2) lw $16, 4($2) sw $16, 0($2) sw $15, 4($2) jr $31 $5  k $?  v[]

27 So far we’ve learned: MIPS — loading words but addressing bytes — arithmetic on registers only InstructionMeaning add $s1, $s2, $s3$s1 = $s2 + $s3 sub $s1, $s2, $s3$s1 = $s2 – $s3 lw $s1, 100($s2)$s1 = Memory[$s2+100] sw $s1, 100($s2)Memory[$s2+100] = $s1

28 Instructions, like registers and words of data, are also 32 bits long –Example: add $t1, $s1, $s2 –registers have numbers, $t1=9, $s1=17, $s2=18 Instruction Format: op rs rt rdshamtfunct Can you guess what the field names stand for? See Page 63 Machine Language

29 Consider the load-word and store-word instructions, –What would the regularity principle have us do? –New principle: Good design demands a compromise Introduce a new type of instruction format –I-type for data transfer instructions –other format was R-type for register Example: lw $t0, 32($s2) op rs rt 16 bit number Where's the compromise? –What size offset would programmer like? Why is it only 16 bits? –Why not get rid of rs field and make offset 6 bits bigger? Machine Language

30 Instructions are bits Programs are stored in memory — to be read or written just like data Fetch & Execute Cycle –Instructions are fetched and put into a special register –Bits in the register "control" the subsequent actions –Fetch the “next” instruction and continue ProcessorMemory memory for data, programs, compilers, editors, etc. Stored Program Concept

31 Decision making instructions –alter the control flow, –i.e., change the "next" instruction to be executed MIPS conditional branch instructions: bne $t0, $t1, Label beq $t0, $t1, Label Example: if (i==j) h = i + j; bne $s0, $s1, Label add $s3, $s0, $s1 Label:.... Control

32 MIPS unconditional branch instructions: j label Example: if (i!=j) beq $s4, $s5, Lab1 h=i+j;add $s3, $s4, $s5 else j Lab2 h=i-j;Lab1:sub $s3, $s4, $s5 Lab2:... Control

33

34

35 So far: InstructionMeaning add $s1,$s2,$s3$s1 = $s2 + $s3 sub $s1,$s2,$s3$s1 = $s2 – $s3 lw $s1,100($s2)$s1 = Memory[$s2+100] sw $s1,100($s2)Memory[$s2+100] = $s1 bne $s4,$s5,LNext instr. is at Label if $s4 ≠ $s5 beq $s4,$s5,LNext instr. is at Label if $s4 = $s5 j LabelNext instr. is at Label Formats: op rs rt rdshamtfunct op rs rt 16 bit address op 26 bit address RIJRIJ

36 We have: beq, bne, what about Branch-if-less-than? New instruction: if $s1 < $s2 then $t0 = 1 slt $t0, $s1, $s2 else $t0 = 0 Control Flow

37 Policy of Use Conventions Register 1 ($at) reserved for assembler, for operating system

38 Small constants are used quite frequently (50% of operands) e.g., A = A + 5; B = B + 1; C = C - 18; Solutions? Why not? –put 'typical constants' in memory and load them. –create hard-wired registers (like $zero) for constants like one. MIPS Instructions: addi $29, $29, 4 slti $8, $18, 10 andi $29, $29, 6 ori $29, $29, 4 Design Principle: Make the common case fast. Which format? Constants

39 We'd like to be able to load a 32 bit constant into a register Must use two instructions, new "load upper immediate" instruction lui $t0, Then must get the lower order bits right, i.e., ori $t0, $t0, ori filled with zeros How about larger constants?

40 Assembly provides convenient symbolic representation –much easier than writing down numbers –e.g., destination first Machine language is the underlying reality –e.g., destination is no longer first Assembly can provide 'pseudoinstructions' –e.g., “move $t0, $t1” exists only in Assembly –would be implemented using “add $t0,$t1,$zero” When considering performance you should count real instructions Assembly Language vs. Machine Language

41 simple instructions all 32 bits wide very structured, no unnecessary baggage only three instruction formats rely on compiler to achieve performance help compiler where we can op rs rt rdshamtfunct op rs rt 16 bit address op 26 bit address RIJRIJ Overview of MIPS

42 Instructions: bne $t4,$t5,Label Next instruction is at Label if $t4  $t5 beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5 j Label Next instruction is at Label Formats: Addresses are not 32 bits — How do we handle this with load and store instructions? op rs rt 16 bit address op 26 bit address IJIJ Addresses in Branches and Jumps

43 Instructions: bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5 beq $t4,$t5,Label Next instruction is at Label if $t4=$t5 Formats: Could specify a register (like lw and sw) and add it to address –use Instruction Address Register (PC = program counter) –most branches are local (principle of locality) Jump instructions just use high order bits of PC –address boundaries of 256 MB op rs rt 16 bit address I Addresses in Branches

44 Page 57

45 To summarize:

46

47 Design alternative: –provide more powerful operations –goal is to reduce number of instructions executed –danger is a slower cycle time and/or a higher CPI Let’s look (briefly) at IA-32 Alternative Architectures –“The path toward operation complexity is thus fraught with peril. To avoid these problems, designers have moved toward simpler instructions”

48 IA : The Intel 8086 is announced (16 bit architecture) 1980: The 8087 floating point coprocessor is added 1982: The increases address space to 24 bits, +instructions 1985: The extends to 32 bits, new addressing modes : The 80486, Pentium, Pentium Pro add a few instructions (mostly designed for higher performance) 1997: 57 new “MMX” instructions are added, Pentium II 1999: The Pentium III added another 70 instructions (SSE) 2001: Another 144 instructions (SSE2) 2003: AMD extends the architecture to increase address space to 64 bits, widens all registers to 64 bits and other changes (AMD64) 2004: Intel capitulates and embraces AMD64 (calls it EM64T) and adds more media extensions “This history illustrates the impact of the “golden handcuffs” of compatibility “adding new features as someone might add clothing to a packed bag” “an architecture that is difficult to explain and impossible to love”

49 IA-32 Overview Complexity: –Instructions from 1 to 17 bytes long –one operand must act as both a source and destination –one operand can come from memory –complex addressing modes e.g., “base or scaled index with 8 or 32 bit displacement” Saving grace: –the most frequently used instructions are not too difficult to build –compilers avoid the portions of the architecture that are slow “what the 80x86 lacks in style is made up in quantity, making it beautiful from the right perspective”

50 IA-32 Registers and Data Addressing Registers in the 32-bit subset that originated with 80386

51 IA-32 Register Restrictions Registers are not “general purpose” – note the restrictions below

52 IA-32 Typical Instructions Four major types of integer instructions: –Data movement including move, push, pop –Arithmetic and logical (destination register or memory) –Control flow (use of condition codes / flags ) –String instructions, including string move and string compare

53

54 ADC AX,[SI+BP-2]

55 IA-32 instruction Formats Typical formats: (notice the different lengths)

56 Instruction complexity is only one variable –lower instruction count vs. higher CPI / lower clock rate Design Principles: –simplicity favors regularity –smaller is faster –good design demands compromise –make the common case fast Instruction set architecture –a very important abstraction indeed! Summary

57 Concluding Remarks Evolution vs. Revolution “More often the expense of innovation comes from being too disruptive to computer users” “Acceptance of hardware ideas requires acceptance by software people; therefore hardware people should learn about software. And if software people want good machines, they must learn more about hardware to be able to communicate with and thereby influence hardware engineers.”