Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.

Slides:



Advertisements
Similar presentations
Quantum Walks, Quantum Gates, and Quantum Computers Andrew Hines P.C.E. Stamp [Palm Beach, Gold Coast, Australia]
Advertisements

Quantum algorithms in the presence of decoherence: optical experiments Masoud Mohseni, Jeff Lundeen, Kevin Resch and Aephraim Steinberg Department of Physics,
Quantum Computing MAS 725 Hartmut Klauck NTU
Spin chains and channels with memory Martin Plenio (a) & Shashank Virmani (a,b) quant-ph/ , to appear prl (a)Institute for Mathematical Sciences.
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
Quantum random walks Andre Kochanke Max-Planck-Institute of Quantum Optics 7/27/2011.
1 Multiphoton Entanglement Eli Megidish Quantum Optics Seminar,2010.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Suppressing decoherence and heating with quantum bang-bang controls David Vitali and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Quantum Error Correction Joshua Kretchmer Gautam Wilkins Eric Zhou.
Holonomic quantum computation in decoherence-free subspaces Lian-Ao Wu Center for Quantum Information and Quantum Control In collaboration with Polao Zanardi.
A Universal Operator Theoretic Framework for Quantum Fault Tolerance Yaakov S. Weinstein MITRE Quantum Information Science Group MITRE Quantum Error Correction.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Quantum Error Correction Michele Mosca. Quantum Error Correction: Bit Flip Errors l Suppose the environment will effect error (i.e. operation ) on our.
NMR Quantum Information Processing and Entanglement R.Laflamme, et al. presented by D. Motter.
The Integration Algorithm A quantum computer could integrate a function in less computational time then a classical computer... The integral of a one dimensional.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
General Entanglement-Assisted Quantum Error-Correcting Codes Todd A. Brun, Igor Devetak and Min-Hsiu Hsieh Communication Sciences Institute QEC07.
BB84 Quantum Key Distribution 1.Alice chooses (4+  )n random bitstrings a and b, 2.Alice encodes each bit a i as {|0>,|1>} if b i =0 and as {|+>,|->}
Quantum Cryptography Prafulla Basavaraja CS 265 – Spring 2005.
Lo-Chau Quantum Key Distribution 1.Alice creates 2n EPR pairs in state each in state |  00 >, and picks a random 2n bitstring b, 2.Alice randomly selects.
Quantum Cryptography December, 3 rd 2007 Philippe LABOUCHERE Annika BEHRENS.
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
School of Physics & Astronomy FACULTY OF MATHEMATICAL & PHYSICAL SCIENCE Parallel Transport & Entanglement Mark Williamson 1, Vlatko Vedral 1 and William.
Quantum Communication, Quantum Entanglement and All That Jazz Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering,
Autonomous Quantum Error Correction Joachim Cohen QUANTIC.
Witnesses for quantum information resources Archan S. Majumdar S. N. Bose National Centre for Basic Sciences, Kolkata, India Collaborators: S. Adhikari,
Quantum Error Correction Jian-Wei Pan Lecture Note 9.
QUANTUM ENTANGLEMENT AND IMPLICATIONS IN INFORMATION PROCESSING: Quantum TELEPORTATION K. Mangala Sunder Department of Chemistry IIT Madras.
Quantum Error Correction and Fault-Tolerance Todd A. Brun, Daniel A. Lidar, Ben Reichardt, Paolo Zanardi University of Southern California.
From Flipping Qubits to Programmable Quantum Processors Drinking party Budmerice, 1 st May 2003 Vladimír Bužek, Mário Ziman, Mark Hillery, Reinhard Werner,
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
Decoherence-free/Noiseless Subsystems for Quantum Computation IPQI, Bhubaneswar February 24, 2014 Mark Byrd Physics Department, CS Department Southern.
Lecture note 8: Quantum Algorithms
Engineering of arbitrary U(N) transformation by quantum Householder reflections P. A. Ivanov, E. S. Kyoseva, and N. V. Vitanov.
The Road to Quantum Computing: Boson Sampling Nate Kinsey ECE 695 Quantum Photonics Spring 2014.
Experimental generation and characterisation of private states Paweł Horodecki Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska.
Quantum Convolutional Coding for Distillation and Error Correction Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical.
Quantum Teleportation and Bit Commitment Chi-Yee Cheung Chung Yuan Christian University June 9, 2009.
Quantum Cryptography Zelam Ngo, David McGrogan. Motivation Age of Information Information is valuable Protecting that Information.
Information Processing by Single Particle Hybrid Entangled States Archan S. Majumdar S. N. Bose National Centre for Basic Sciences Kolkata, India Collaborators:
Quantum Key Distribution Chances and Restrictions Norbert Lütkenhaus Emmy Noether Research Group Institut für Theoretische Physik I Universität Erlangen-Nürnberg.
Quantum Dense coding and Quantum Teleportation
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 20 (2009)
Quantum Cryptography Slides based in part on “A talk on quantum cryptography or how Alice outwits Eve,” by Samuel Lomonaco Jr. and “Quantum Computing”
Efficiency of Multi-Qubit W states in Information Processing Atul Kumar IPQI-2014 IIT Jodhpur
Quantum Computing Reversibility & Quantum Computing.
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Quantum Convolutional Coding Techniques Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering, University of.
Efficient measure of scalability Cecilia López, Benjamin Lévi, Joseph Emerson, David Cory Department of Nuclear Science & Engineering, Massachusetts Institute.
A simple nearest-neighbour two-body Hamiltonian system for which the ground state is a universal resource for quantum computation Stephen Bartlett Terry.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Unraveling Entanglement O. Brodier M. Busse, C. Viviescas, A. R. R. Carvalho, A. Buchleitner M.P.I.P.K.S. Nöthnitzer Str. 38, D DRESDEN, ALLEMAGNE.
Uni-Heidelberg Physikalisches Insitut Jian-Wei Pan Multi-Particle Entanglement & It’s Application in Quantum Networks Jian-Wei Pan Lecture Note.
Entangling Quantum Virtual Subsytems Paolo Zanardi ISI Foundation February Universita’di Milano.
Hybrid quantum error prevention, reduction, and correction methods Daniel Lidar University of Toronto Quantum Information & Quantum Control Conference.
1 Conference key-agreement and secret sharing through noisy GHZ states Kai Chen and Hoi-Kwong Lo Center for Quantum Information and Quantum Control, Dept.
Unraveling Entanglement O. Brodier M. Busse, C. Viviescas, A. R. R. Carvalho, A. Buchleitner M.P.I.P.K.S. Nöthnitzer Str. 38, D DRESDEN, ALLEMAGNE.
Unraveling Entanglement O. Brodier M. Busse, C. Viviescas, A. R. R. Carvalho, A. Buchleitner M.P.I.P.K.S. Nöthnitzer Str. 38, D DRESDEN, ALLEMAGNE.
Page 1 COMPSCI 290.2: Computer Security “Quantum Cryptography” including Quantum Communication Quantum Computing.
Quantum Cryptography Antonio Acín
Richard Cleve DC 2117 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Lecture (2011)
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Linear Quantum Error Correction
Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki * *Perimeter Institute for.
Quantum computation with classical bits
Determining the capacity of any quantum computer to perform a useful computation Joel Wallman Quantum Resource Estimation June 22, 2019.
Presentation transcript:

Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7

Jian-Wei PanDecoherence open system dynamics System Environment The off-diagonal element of the qubit density matrix will drop down with the rate depends on the coupling between qubit and environment. More generally... How to guide the dynamics of system-environment coupling?

Jian-Wei Pan  Quantum Error Correction for QC  Active (Error correction): deal well with independent errors on qubits  Quantum Entanglement Purification for QC  Entanglement Purification (any unknown mixed state)  Local Filtering (known state)  Entanglement Concentration (unknown state)  QC based on Decoherence-free Subspace  Passive (error avoidance): find a subspace of the system space over which evolution stays unitary, unperturbed, correlated noise  Error-free Transfer in QC  Active (error rejection): reject the contaminated information Possible solutions to overcome decoherence in long-distance quantum communication (QC)

Jian-Wei Pan  QC based on Decoherence- free Subspace  Error-free Transfer in QC

Jian-Wei Pan Decoherence-free subspace (DFS)

Jian-Wei Pan Decoherence Free Subspace General Definitions, Collective Decoherence Robustness to perturbing error processes Use of DF subspace for concatenation into a Quantum Error Correcting Code (QECC) Relationship between DF subspace and QECC Existential universality results on DF subspaces/symmetrization methods Subsystem Generalization How do we perform quantum communication in a DFS? [Phys. Rev. Lett. 79, 1953 (1997); Phys. Rev. Lett. 79, 3306 (1997); Phys. Rev. Lett. 81, 2594 (1998)] [Phys. Rev. Lett. 81, 2594 (1998); Phys. Rev. A 60, 1944 (1999)] [Phys. Rev. Lett. 82, 4556 (1999)] [Phys. Rev. A (R) (1999)] [Phys. Rev. Lett. 84, 2525(2000)] 1997 Symmetrization/Bang-bang methods [Phys. Rev. A 58, 2733 (1998); Phys.Lett. A 258, 77 (1999) ] DFS History

Jian-Wei Pan DFS under Collective Noise Collective Rotation Noise : Noise can be seen as some unitary transformation as U(θ,Φ), if for all the channel, the unitary is the same, then it is called collective noise. If Φ is 0, i.e., U = U(θ), it is called collective rotation noise

Jian-Wei Pan [P. G. Kwiat et al., Science 290, 498(2000); J. B. Altepeter, et al., Phys. Rev. Lett. 92, (2004)] DFS under Collective Rotation Noise

Jian-Wei Pan DFS for Collective Rotation Noise The two state are invariant under the collective rotation noise. All the linear superposition of the two states constitute a subspace that is decoherence free to the noise. [P. G. Kwiat et al., Science 290, 498(2000);

Jian-Wei Pan Similar to BB84, +,- respect the diagonal state and anti-diagonal state respectively. The four state can be used to encode key and the security bound is the same as BB84 protocol. Application in quantum key distribution using a DFS [X.B.Wang, Phys. Rev. A 72, (R) (2005)]

Jian-Wei Pan Experimental Setup [Q. Zhang, PRA 73, (R) 2006]

Jian-Wei Pan Experimental Result QBER of DFS and traditional BB84 under the collective rotation noise. |θ| > π/8, QBER BB84 >11%

Jian-Wei PanDrawback DFS only for Collective Rotation Noise Other noise  Free space phase drifting caused by temperature difference  Long distance in optical fibers will cause a redoubtable obstacle Noise not only in H/V basis!

Jian-Wei Pan Collective Noise

Jian-Wei Pan A new protocol First apply a time delay between H and V, the state will be After a collective noise Bob can measure in any direction (H’/V’) which also can be considered as part of the collective noise.

Jian-Wei Pan A new protocol Then again, Bob apply a time delay between H and V, the state will be The last operation is to project the state onto the subspace in which the photons arrive exactly at the same time

Jian-Wei Pan We will get with a probability  1/3 by a random unitary transformation A new protocol

Jian-Wei Pan [T.-Y Chen et al., Phys. Rev. Lett (2006)] Experimental Setup

Jian-Wei Pan Experimental Result 4m fiber without random rotations with random rotations average QBER

Jian-Wei Pan Experimental Result 1km fiber [T.-Y Chen et al., Phys. Rev. Lett (2006)] without random rotations with random rotations average QBER

Jian-Wei Pan  QC based on Decoherence- free Subspace  Error-free Transfer in QC

Jian-Wei Pan

Bit-flip Error Correction CNot Operation Required!!! [D. Bouwmeester, PRA 63, (R) (2001).] two bits flipping (p 2 ) can’t be corrected

Jian-Wei Pan Error-free transfer

Jian-Wei Pan Problem in Experimental Realization Possibility of two pair emission is in the same order and will cause four-fold coincidence!

Jian-Wei Pan [X.-B. Wang, PRA 69, (2004)] Error-free transfer 2’ 1’2” 1”

Jian-Wei Pan Through a noisy channel with bit-flip error rate p new the remaining QBER will be

Jian-Wei Pan Experimental Set-up Trigged by D 4 possibility of two pair emission will be much lower [Y.-A. Chen et al., PRL 96, (2006)]

Jian-Wei Pan By one HWP inside two QWP, any U-transmit can be implemented! Bit-flip-error simulation

Jian-Wei Pan

Quantum Noisy Channel

Jian-Wei Pan Experimental Results [Y.-A. Chen et al., PRL 96, (2006)]

Jian-Wei Pan The phase-shift error rejection can be realized.

Jian-Wei Pan The higher order bit-flip error can be rejected. encoding unknown quantum states into higher multi- photon entanglement (N), the higher order (up to N-1) error can be rejected

Jian-Wei Pan Applied to the quantum key distribution the threshold of tolerable error rate over the quantum noisy channel can be greatly improved. [X.-B. Wang, PRL 92, (2004)]