Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Slides:



Advertisements
Similar presentations
Dynamic Causal Modelling (DCM) for fMRI
Advertisements

J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Bayesian inference.
Bayesian inference Lee Harrison York Neuroimaging Centre 01 / 05 / 2009.
EEG-MEG source reconstruction
Dynamic causal Modelling for evoked responses Stefan Kiebel Wellcome Trust Centre for Neuroimaging UCL.
EEG/MEG Source Localisation
Hierarchical Models and
Bayesian models for fMRI data
M/EEG forward problem & solutions Brussels 2011 SPM-M/EEG course January 2011 C. Phillips, Cyclotron Research Centre, ULg, Belgium.
MEG/EEG Inverse problem and solutions In a Bayesian Framework EEG/MEG SPM course, Bruxelles, 2011 Jérémie Mattout Lyon Neuroscience Research Centre ? ?
Overview Contrast in fMRI v contrast in MEG 2D interpolation 1 st level 2 nd level Which buttons? Other clever things with SPM for MEG Things to bear in.
The M/EEG inverse problem
Bayesian models for fMRI data
Bayesian models for fMRI data Methods & models for fMRI data analysis 06 May 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK Institute of Empirical Research in Economics, Zurich, Switzerland Bayesian inference.
Group analyses of fMRI data Methods & models for fMRI data analysis 28 April 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
Group analyses of fMRI data Methods & models for fMRI data analysis 26 November 2008 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
Preprocessing II: Between Subjects John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK.
Sensor & Source Space Statistics Sensor & Source Space Statistics Rik Henson (MRC CBU, Cambridge) With thanks to Jason Taylor, Vladimir Litvak, Guillaume.
The M/EEG inverse problem and solutions Gareth R. Barnes.
General Linear Model & Classical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM M/EEGCourse London, May.
Dynamic Causal Modelling (DCM): Theory Demis Hassabis & Hanneke den Ouden Thanks to Klaas Enno Stephan Functional Imaging Lab Wellcome Dept. of Imaging.
Statistical Analysis of M/EEG Sensor- and Source-Level Data Jason Taylor MRC Cognition and Brain Sciences Unit (CBU) Cambridge Centre for Ageing and Neuroscience.
SPM Course Zurich, February 2015 Group Analyses Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London With many thanks to.
Multimodal Brain Imaging Will D. Penny FIL, London Guillaume Flandin, CEA, Paris Nelson Trujillo-Barreto, CNC, Havana.
2004 All Hands Meeting Analysis of a Multi-Site fMRI Study Using Parametric Response Surface Models Seyoung Kim Padhraic Smyth Hal Stern (University of.
Group analyses of fMRI data Methods & models for fMRI data analysis November 2012 With many thanks for slides & images to: FIL Methods group, particularly.
EEG/MEG Source Localisation SPM Course – Wellcome Trust Centre for Neuroimaging – Oct ? ? Jérémie Mattout, Christophe Phillips Jean Daunizeau Guillaume.
EEG/MEG source reconstruction
Bayesian Inference and Posterior Probability Maps Guillaume Flandin Wellcome Department of Imaging Neuroscience, University College London, UK SPM Course,
Sensor & Source Space Statistics Sensor & Source Space Statistics Rik Henson (MRC CBU, Cambridge) With thanks to Jason Taylor, Vladimir Litvak, Guillaume.
Dynamic Causal Modelling for EEG and MEG
EEG/MEG source reconstruction
Dynamic Causal Modelling Introduction SPM Course (fMRI), October 2015 Peter Zeidman Wellcome Trust Centre for Neuroimaging University College London.
Ch. 5 Bayesian Treatment of Neuroimaging Data Will Penny and Karl Friston Ch. 5 Bayesian Treatment of Neuroimaging Data Will Penny and Karl Friston 18.
Dynamic Causal Model for evoked responses in MEG/EEG Rosalyn Moran.
Multimodal Brain Imaging Wellcome Trust Centre for Neuroimaging, University College, London Guillaume Flandin, CEA, Paris Nelson Trujillo-Barreto, CNC,
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
M/EEG: Statistical analysis and source localisation Expert: Vladimir Litvak Mathilde De Kerangal & Anne Löffler Methods for Dummies, March 2, 2016.
MEG Analysis in SPM Rik Henson (MRC CBU, Cambridge) Jeremie Mattout, Christophe Phillips, Stefan Kiebel, Olivier David, Vladimir Litvak,... & Karl Friston.
Bayesian Inference in SPM2 Will Penny K. Friston, J. Ashburner, J.-B. Poline, R. Henson, S. Kiebel, D. Glaser Wellcome Department of Imaging Neuroscience,
Ch 1. Introduction Pattern Recognition and Machine Learning, C. M. Bishop, Updated by J.-H. Eom (2 nd round revision) Summarized by K.-I.
1 Jean Daunizeau Wellcome Trust Centre for Neuroimaging 23 / 10 / 2009 EEG-MEG source reconstruction.
Bayesian Model Selection and Averaging SPM for MEG/EEG course Peter Zeidman 17 th May 2016, 16:15-17:00.
Imaging Source Reconstruction in the Bayesian Framework
Group Analyses Guillaume Flandin SPM Course London, October 2016
Statistical Analysis of M/EEG Sensor- and Source-Level Data
Dynamic Causal Modelling (DCM): Theory
M/EEG Analysis in SPM Rik Henson (MRC CBU, Cambridge)
Generative Models of M/EEG:
Dynamic Causal Model for evoked responses in M/EEG Rosalyn Moran.
Contrasts & Statistical Inference
Statistical Parametric Mapping
Statistical Analysis of M/EEG Sensor- and Source-Level Data
SPM2: Modelling and Inference
Dynamic Causal Modelling for M/EEG
Bayesian Methods in Brain Imaging
Hierarchical Models and
Bayesian inference J. Daunizeau
M/EEG Statistical Analysis & Source Localization
Contrasts & Statistical Inference
Bayesian Inference in SPM2
Mixture Models with Adaptive Spatial Priors
Dynamic Causal Modelling for evoked responses
Will Penny Wellcome Trust Centre for Neuroimaging,
DCM Demo – Model Specification, Inversion and 2nd Level Inference
Bayesian Model Selection and Averaging
Contrasts & Statistical Inference
Group DCM analysis for cognitive & clinical studies
Presentation transcript:

Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Overview 1.A Generative Model of M/EEG 2.Group inversion (optimising priors across subjects) 3.Multimodal integration: 3.1 Symmetric integration (fusion) of MEG + EEG 3.2 Asymmetric integration of MEG + fMRI 3.3 Full fusion of MEG/EEG + fMRI?

1. A PEB Framework for MEG/EEG (Generative Model) Phillips et al (2005), Neuroimage Y = Data n sensors J = Sources p>>n sources L = Leadfieldsn sensors x p sources E = Error n sensors (Linear) Forward Model for MEG/EEG (for one timepoint): (Gaussian) Likelihood: C (e) = n x n Sensor (error) covariance Prior: C (j) = p x p Source (prior) covariance Posterior:

Specifying (co)variance components (priors/regularisation): 1. Sensor components, (error): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters 2. Source components, (priors/regularisation): “IID” (white noise): # sensors Empty-room: # sensors “IID” (min norm): # sources Multiple Sparse Priors (MSP): # sources Friston et al (2008) Neuroimage 1. A PEB Framework for MEG/EEG (Generative Model)

Friston et al (2008) Neuroimage Fixed Variable Data

1. A PEB Framework for MEG/EEG (Inversion) Friston et al (2002) Neuroimage 1. Obtain Restricted Maximum Likelihood (ReML) estimates of the hyperparameters (λ) by maximising the variational “free energy” (F): 2. Obtain Maximum A Posteriori (MAP) estimates of parameters (sources, J): cf. Tikhonov …and an estimate of their posterior covariance (inverse precision): 3. Maximal F approximates Bayesian (log) “model evidence” for a model, m: (relevant to MEG+EEG integration) (relevant to MEG+fMRI integration)

Summary: 1. A PEB Framework for MEG/EEG Automatically “regularises” in principled fashion… …allows for multiple constraints (priors)… …to the extent that multiple (100’s) of sparse priors possible… …(or multiple error components or multiple fMRI priors)… …furnishes estimates of source precisions and model evidence

2. Group Inversion Specifying (co)variance components (priors/regularisation): 1. Sensor components, (error): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters 2. Source components, (priors/regularisation): “IID” (white noise): # sensors Empty-room: # sensors “IID” (min norm): # sources Multiple Sparse Priors (MSP): # sources Friston et al (2008) Neuroimage

Specifying (co)variance components (priors/regularisation): 1. Sensor components, (error): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters “IID” (white noise): # sensors Empty-room: # sensors 2. Optimise Multiple Sparse Priors by pooling across participants 2. Group Inversion Litvak & Friston (2008) Neuroimage # sources

2. Group Inversion (single subject) (Generative Model) Litvak & Friston (2008) Neuroimage

2. Group Inversion (multiple subjects) (Generative Model) Litvak & Friston (2008) Neuroimage

…projecting data and leadfields to a reference subject (0): Common source-level priors: Subject-specific sensor-level priors: 2. Group Inversion (Generative Model) Litvak & Friston (2008) Neuroimage

2. Group Inversion (Generative Model) Litvak & Friston (2008) Neuroimage MMN MSP MSP (Group)

fMRIMEG? (future) Data: Causes (hidden): Generative (Forward) Models: Balloon Model Head Model ? EEG Head Model “Neural” Activity 3. Types of Multimodal Integration (inversion)

Asymmetric Integration fMRIMEG? (future) Data: Causes (hidden): Generative (Forward) Models: Balloon Model Head Model ? EEG Head Model “Neural” Activity Symmetric Integration (Fusion) 3. Types of Multimodal Integration Daunizeau et al (2007), Neuroimage

Specifying (co)variance components (priors/regularisation): 1. Sensor components, (error): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters 2. Source components, (priors/regularisation): “IID” (white noise): # sensors Empty-room: # sensors “IID” (min norm): # sources Multiple Sparse Priors (MSP): # sources Friston et al (2008) Neuroimage 3.1 Fusion of MEG+EEG (Theory)

Specifying (co)variance components (priors/regularisation): 1. Sensor components, (error): C i (e) = Sensor error covariance for ith modality Q ij = jth component for ith modality λ ij = Hyper-parameters 2. Source components, (priors/regularisation): “IID” (min norm): # sources Multiple Sparse Priors (MSP): # sources # sensors E.g, white noise for 2 modalities: Henson et al (2009) Neuroimage 3.1 Fusion of MEG+EEG (Theory)

3.1 Fusion of MEG+EEG (Generative Model) Henson et al (2009) Neuroimage

3.1 Fusion of MEG+EEG (Generative Model) Henson et al (2009) Neuroimage

3.1 Fusion of MEG+EEG (Theory) Henson et al (2009) Neuroimage Stack data and leadfields for d modalities: Where data / leadfields scaled to have same average / predicted variance: m i = Number of spatial modes (e.g, channels) (note: common sources and source priors, but separate error components)

ERs from 12 subjects for 3 simultaneously-acquired Neuromag sensor-types: RMS fT/m VV Faces Scrambled fT 3.1 Fusion of MEG+EEG (Application) Magnetometers (MEG, 102) (Planar) Gradiometers (MEG, 204) Electrodes (EEG, 70) Henson et al (2009) Neuroimage ms Faces - Scrambled ms

MEG mags MEG grads EEG FUSED Fusion of MEG+EEG Henson et al (2009) Neuroimage IID noise for each modality; common MSP for sources (fixed number of spatial+temporal modes) Scrambled msFaces – Scrambled, Faces

3.1 Fusion of MEG+EEG (Conclusions) Henson et al (2009) Neuroimage Fusing magnetometers, gradiometers and EEG increased the conditional precision of the source estimates relative to inverting any one modality alone (when equating number of spatial+temporal modes) The maximal sources recovered from fusion were a plausible combination of the ventral temporal sources recovered by MEG and the lateral temporal sources recovered by EEG (Simulations show the relative scaling of mags and grads agrees with empty-room data)

3.2 Integration of M/EEG+fMRI Specifying (co)variance components (priors/regularisation): 1. Sensor components, (error): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters 2. Source components, (priors/regularisation): “IID” (white noise): # sensors Empty-room: # sensors “IID” (min norm): # sources Multiple Sparse Priors (MSP): # sources Friston et al (2008) Neuroimage

Henson et al (in press) Human Brain Mapping Specifying (co)variance components (priors/regularisation): 1. Sensor components, (error): C = Sensor/Source covariance Q = Covariance components λ = Hyper-parameters “IID” (white noise): # sensors Empty-room: # sensors “IID” (min norm): # sources fMRI Priors: # sources 2. Each suprathreshold fMRI cluster becomes a separate prior 3.2 Integration of M/EEG+fMRI

3.2 Integration of M/EEG+fMRI (Generative Model)

Henson et al (in press) Human Brain Mapping T1-weighted MRI Anatomical data {T,F,Z}-SPM Gray matter segmentation Cortical surface extraction 3D geodesic Voronoï diagram Functional data … 1. Thresholding and connected component labelling … 2. Projection onto the cortical surface using the Voronoï diagram … 3. Prior covariance components 3.2 Integration of M/EEG+fMRI (Priors)

3.2 Integration of M/EEG+fMRI (Application) Henson et al (in press) Human Brain Mapping Prior 4.Prior 5. SPM{F} for faces versus scrambled faces, 15 voxels, p<.05 FWE 5 clusters from SPM of fMRI data from separate group of (18) subjects in MNI space

3.2 Fusion of MEG+fMRI (Application) Henson et al (in press) Human Brain Mapping Prior 4.Prior 5. (binarised, variance priors) Magnetometers (MEG) * * * * None Global Local (Valid) Local (Invalid) Valid+Invalid Electrodes (EEG) Negative Free Energy (a.u.) (model evidence) * * * * * * * Gradiometers (MEG)

3.2 Fusion of MEG+fMRI (Application) Henson et al (in press) Human Brain Mapping Prior 4.Prior 5. (binarised, variance priors) Magnetometers (MEG) * * * * Gradiometers (MEG) None Global Local (Valid) Local (Invalid) Valid+Invalid Electrodes (EEG) Negative Free Energy (a.u.) (model evidence) * * * * * * *

3.2 Fusion of MEG+fMRI (Application) Henson et al (in press) Human Brain Mapping Prior 4.Prior 5. (binarised, variance priors) Magnetometers (MEG) * * * * Gradiometers (MEG) None Global Local (Valid) Local (Invalid) Valid+Invalid Electrodes (EEG) Negative Free Energy (a.u.) (model evidence) * * * * * * *

3.2 Fusion of MEG+fMRI (Application) Henson et al (in press) Human Brain Mapping Prior 4.Prior 5. (binarised, variance priors) Magnetometers (MEG) * * * * Gradiometers (MEG) None Global Local (Valid) Local (Invalid) Valid+Invalid Electrodes (EEG) Negative Free Energy (a.u.) (model evidence) * * * * * * *

3.2 Fusion of MEG+fMRI (Application) Henson et al (in press) Human Brain Mapping Prior 4.Prior 5. (binarised, variance priors) Magnetometers (MEG) * * * * Gradiometers (MEG) None Global Local (Valid) Local (Invalid) Valid+Invalid Electrodes (EEG) Negative Free Energy (a.u.) (model evidence) * * * * * * *

3.2 Fusion of MEG+fMRI (Application) Henson et al (in press) Human Brain Mapping None Global Local (Valid) Local (Invalid) Magnetometers (MEG) Gradiometers (MEG) Electrodes (EEG) IID sources and IID noise (L2 MNM)

3.2 Fusion of MEG+fMRI (Application) Henson et al (in press) Human Brain Mapping None Global Local (Valid) Local (Invalid) Magnetometers (MEG) Gradiometers (MEG) Electrodes (EEG) IID sources and IID noise (L2 MNM)

3.2 Fusion of MEG+fMRI (Application) Henson et al (in press) Human Brain Mapping fMRI priors counteract superficial bias of L2-norm None Global Local (Valid) Local (Invalid) Magnetometers (MEG) Gradiometers (MEG) Electrodes (EEG) IID sources and IID noise (L2 MNM)

3.2 Fusion of MEG+fMRI (Application) Henson et al (in press) Human Brain Mapping fMRI priors counteract superficial bias of L2-norm None Global Local (Valid) Local (Invalid) Magnetometers (MEG) Gradiometers (MEG) Electrodes (EEG) IID sources and IID noise (L2 MNM)

3.2 Fusion of MEG+fMRI (Application) Henson et al (in press) Human Brain Mapping Prior 4.Prior 5. NB: Priors affect variance, not precise timecourse… R L Gradiometers (MEG) (5 Local Valid Priors) Differential Response (Faces vs Scrambled) Differential Response (Faces vs Scrambled) Right Posterior Fusiform (rPF) Right Medial Fusiform (rMF) Right Lateral Fusiform (rLF) Left occipital pole (lOP) Left Lateral Fusiform (lLF) Differential Response (Faces vs Scrambled)

Adding a single, global fMRI prior increases model evidence Adding multiple valid priors increases model evidence further Helpful if some fMRI regions produce no MEG/EEG signal (or arise from neural activity at different times) Adding invalid priors rarely increases model evidence, particularly in conjunction with valid priors Can counteract superficial bias of, e.g, minimum-norm Affects variance but not not precise timecourse (Adding fMRI priors to MSP has less effect) 3.2 Fusion of MEG+fMRI (Conclusions) Henson et al (in press) Human Brain Mapping

3.3 Fusion of fMRI and MEG/EEG? fMRIMEG? (future) Data: Causes (hidden): Balloon Model Head Model ? EEG Head Model “Neural” Activity Fusion of fMRI + MEG/EEG? Henson (2010) Biomag

3.3 Fusion of fMRI and MEG/EEG? Henson (2010) Biomag

time (t)? space (s) 3.3 Fusion of fMRI and MEG/EEG? Henson (2010) Biomag

Overall Conclusions 1.The PEB (in SPM8) framework is advantageous 2.Group optimisation of MSPs can be advantageous 3.Full fusion of MEG and EEG is advantageous 4.Using fMRI as (spatial) priors on MEG is advantageous 5.Unclear that fusion of fMRI and M/EEG is advantageous

The End

3. Fusion of MEG+EEG Henson et al (2009) Neuroimage

Participant Grads Mags log(λ x 10 6 ) Participant EEG Grads Mags log(λ x 10 6 ) 3. Fusion of MEG+EEG Hyperparameters Henson et al (2009) Neuroimage

4. Fusion of MEG+fMRI Henson et al (in press) Human Brain Mapping Prior 4.Prior 5. fMRI hyperparameters ln(λ)+32 Participant Magnetometers (MEG)Gradiometers (MEG)Electrodes (EEG) Local Valid Local Invalid