Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen C. Feuchter & H. R. hep-th/0402106, PRD70 hep-th/0408237, PRD71 hep-th/0408236 D. Epple, C. Feuchter,

Slides:



Advertisements
Similar presentations
Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Simple (approximate) YM vacuum wave-functional in 2+1 dimensions.
Advertisements

Nagoya March. 20, 2012 H. Terao. (Nara Women’s Univ.)
Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Heavy Quarkonia in a Hot Medium Cheuk-Yin Wong Oak Ridge National Laboratory & University of Tennessee Heavy Quark Workshop, BNL December 12-14, 2005 Introduction.
A journey inside planar pure QED CP3 lunch meeting By Bruno Bertrand November 19 th 2004.
Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Coulomb energy, remnant symmetry in Coulomb gauge, and phases of.
Phase Structure of Thermal QCD/QED: A “Gauge Invariant” Analysis based on the HTL Improved Ladder Dyson-Schwinger Equation Hisao NAKKAGAWA Nara University.
Solving non-perturbative renormalization group equation without field operator expansion and its application to the dynamical chiral symmetry breaking.
QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
Gerard ’t Hooft Spinoza Institute Utrecht, the Netherlands Utrecht University.
Heavy quark potential in an anisotropic plasma We determine the real part of the heavy-quark potential in the nonrelativistic limit, at leading order,
From gluons to hybrids : Coulomb gauge perspective Adam Szczepaniak IU Gluons and glueballs in Coulomb gauge Gluelumps and Hybrids Spectrum of gluonic.
Functional renormalization – concepts and prospects.
CONFINEMENT WITHOUT A CENTER: THE EXCEPTIONAL GAUGE GROUP G(2) M I C H E L E P E P E U n i v e r s i t y o f B e r n (S w i t z e r l a n d)
Chiral freedom and the scale of weak interactions.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.
Modified Coulomb potential of QED in a strong magnetic field Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics.
Heavy quark potential and running coupling in QCD W. Schleifenbaum Advisor: H. Reinhardt University of Tübingen EUROGRADworkshop Todtmoos 2007.
Quarkonia and heavy-light mesons in a covariant quark model Sofia Leitão CFTP, University of Lisbon, Portugal in collaboration with: Alfred Stadler, M.
Self Sustained Wormholes Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano MG 11 Berlin,
Color confinement mechanism and the type of the QCD vacuum Tsuneo Suzuki (Kanazawa Univ.) Collaborators: K.Ishiguro, Y.Mori, Y.Nakamura, T.Sekido ( M.Polikarpov,
INSTANTON AND ITS APPLICATION Nam, Seung-il Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Japan YITP, Kyoto University YITP Lunch.
Poincare sub-algebra and gauge invariance in nucleon structure Xiang-Song Chen Huazhong University of Science & Technology 陈相松 华中科技大学 武汉 10 July
Heavy Quark Potential at Finite-T in AdS/CFT Yuri Kovchegov The Ohio State University work done with J. Albacete and A. Taliotis, arXiv: [hep-th]
Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Eigenmodes of covariant Laplacians in SU(2) lattice gauge theory:
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
The relationship between a topological Yang-Mills field and a magnetic monopole RCNP, Osaka, 7 Dec Nobuyuki Fukui (Chiba University, Japan) Kei-Ichi.
Analytical derivation of gauge fields from link variables in SU(3) lattice QCD and its application in Maximally Abelian gauge S.Gongyo(Kyoto Univ.) T.Iritani,
Confinement mechanism and topological defects Review+ papers by A.V.Kovalenko, MIP, S.V. Syritsyn, V.I. Zakharov hep-lat/ , hep-lat/ , hep-lat/
Gluon Fields at Early Times and Initial Conditions for Hydrodynamics Rainer Fries University of Minnesota 2006 RHIC/AGS Users’ Meeting June 7, 2006 with.
Static interquark potentials from lattice QCD Toru T. Takahashi (Gunma College of Technology)
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Background Independent Matrix Theory We parameterize the gauge fields by M transforms linearly under gauge transformations Gauge-invariant variables are.
Infrared gluons in the stochastic quantization approach Lattice20081 Contents 1.Introduction 2.Method: Stochastic gauge fixing 3.Gluon propagators 4.Numerical.
Instanton vacuum at finite density Hyun-Chul Kim Department of Physics Inha University S.i.N. and H.-Ch.Kim, Phys. Rev. D 77, (2008) S.i.N., H.Y.Ryu,
Conformal symmetry breaking in QCD and implications for hot quark-gluon matter D. Kharzeev “Heavy quarks”, LBNL, November 1-3, 2007.
Hamiltonian approach to Yang-Mills Theory in Coulomb gauge H. Reinhardt Tübingen Collaborators: G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W.
Color glass condensate in dense quark matter and off-diagonal long range order of gluons A. Iwazaki (Nishogakusha-u) Success of an effective theory of.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with S. Aoki, K. Kanaya, N. Ishii, N. Ukita, T. Umeda (Univ. of Tsukuba) T. Hatsuda (Univ. of.
1 Lattice Quantum Chromodynamics 1- Literature : Lattice QCD, C. Davis Hep-ph/ Burcham and Jobes By Leila Joulaeizadeh 19 Oct
Xin-Jian Wen ( 温新建 ) CCNU Shanxi University Efrain J. Ferrer & Vivian de la Incera University of Texas at El Paso Anisotropic structure of the.
1 CONFINING INTERQUARK POTENTIALS FROM NON ABELIAN GAUGE THEORIES COUPLED TO DILATON Mohamed CHABAB LPHEA, FSSM Cadi- Ayyad University Marrakech, Morocco.
Gribov copy problem in lattice gauge theory simulation Bornyakov Vitaly IHEP & ITEP ICHEP
Holographic QCD in the medium
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
Localized Eigenmodes of the Covariant Lattice Laplacian Stefan Olejnik, Mikhail Polikarpov, Sergey Syritsyn, Valentin Zakharov and J.G. “Understanding.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
THERMODYNAMICS OF THE HIGH TEMPERATURE QUARK-GLUON PLASMA Jean-Paul Blaizot, CNRS and ECT* Komaba - Tokyo November 25, 2005.
Localization of the scalar and fermionic eigenmodes and confinement J. Greensite, F.V. Gubarev, A.V.Kovalenko, S.M. Morozov, S. Olejnik, MIP, S.V. Syritsyn,
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
ELECTROMAGNETIC PARTICLE: MASS, SPIN, CHARGE, AND MAGNETIC MOMENT Alexander A. Chernitskii.
 Review of QCD  Introduction to HQET  Applications  Conclusion Paper: M.Neubert PRPL 245,256(1994) Yoon yeowoong(윤여웅) Yonsei Univ
LORENTZ AND GAUGE INVARIANT SELF-LOCALIZED SOLUTION OF THE QED EQUATIONS I.D.Feranchuk and S.I.Feranchuk Belarusian University, Minsk 10 th International.
The QCD phase diagram and fluctuations Deconfinement in the SU(N) pure gauge theory and Polyakov loop fluctuations Polyakov loop fluctuations in the presence.
From 3-Geometry Transition Amplitudes to Graviton States Federico Mattei joint work with: Carlo Rovelli, Simone Speziale, Massimo Testa LOOPS ’
Gauge independence of Abelian dual Meissner effect in pure SU(2) QCD Katsuya Ishiguro Y.Mori, T.Sekido, T.Suzuki Kanazawa-univ & RIKEN Joint Meeting of.
CHARM th International Workshop on Charm Physics Honolulu May
Exact vector channel sum rules at finite temperature Talk at the ECT* workshop “Advances in transport and response properties of strongly interacting systems”
Hamiltonian Flow in Coulomb Gauge Yang-Mills theory
Thermodynamics of QCD in lattice simulation with improved Wilson quark action at finite temperature and density WHOT-QCD Collaboration Yu Maezawa (Univ.
Institut für Theoretische Physik Eberhard-Karls-Universität Tübingen
NGB and their parameters
Cliffor Benjamín Compeán Jasso UASLP
dark matter Properties stable non-relativistic non-baryonic
Adnan Bashir, UMSNH, Mexico
Global Defects near Black Holes
GLOBAL POLARIZATION OF QUARKS IN NON-CENTRAL A+A COLLISIONS
QCD at very high density
American Physical Society
Presentation transcript:

Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen C. Feuchter & H. R. hep-th/ , PRD70 hep-th/ , PRD71 hep-th/ D. Epple, C. Feuchter, H.R., hep-th/ non-perturbative approach to continuum YMT W. Schleifenbaum M. Leder H. Turan

Previous work: A.P. Szczepaniak, E. S. Swanson, Phys. Rev. 65 (2002) A.P. Szczepaniak, hep-ph/ P.O. Bowman, A.P. Szczepaniak, hep-ph/

Plan of the talk Basics of continuum Yang-Mills theory in Coulomb gauge Variational solution of the YM Schrödinger equation: Dyson- Schwinger equations Results: –Ghost and gluon propagators –Heavy quark potential –Color electric field of static sources YM wave functional Finite temperatures Connection to the center vortex picture of confinement

Classical Yang-Mills theory Lagrange function: field strength tensor

Canonical Quantization of Yang-Mills theory Gauß law:

Coulomb gauge Gauß law: resolution of Gauß´ law curved space Faddeev-Popov

YM Hamiltonian in Coulomb gauge -arises from Gauß´law =neccessary to maintain gauge invariance -provides the confining potential Coulomb term Christ and Lee

Importance of the Faddeev-Popov determinant defines the metric in the space of gauge orbits and hence reflects the gauge invariance

aim: solving the Yang-Mills Schrödinger eq. for the vacuum by the variational principle with suitable ansätze for space of gauge orbits: metric

Vacuum wave functional determined fromvariational kernel at the Gribov horizon: wave function is singular -identifies all configurations on the Gribov horizon preserves gauge invariance -topolog. compactification of the Gribov region FMR

QM: particle in a L=0-state

Minimization of the energy set of Schwinger-Dyson equations for:

Gluon propagator transversal projector Wick´s theorem: any vacuum expectation value of field operators can be expressed by the gluon propagator

Ghost propagator ghost form factor d Abelian case d=1 ghost self-energy

Ghost-gluon vertex rain-bow ladder approx: replace full vertex by bare one bare vertex

Curvature (ghost part of the gluon energy)

Coulomb form factor f Schwinger-Dyson eq.

Regularization and renormalization : momentum subtraction scheme renormalization constants: ultrviolet and infrared asymtotic behaviour of the solutions to the Schwinger Dyson equations is independent of the renormalization constants except for In D=2+1 is the only value for which the coupled Schwinger-Dyson equation have a self-consistent solution horizon condition

Asymptotic behaviour D=3+1 -angular approximation infrared behaviour ultraviolet behaviour

Numerical results (D=3+1) ghost and Coulomb form factors gluon energy and curvature mass gap:

Coulomb potential

external static color sources electric field ghost propagator

The color electric flux tube

The flux between 3 static color charges a=3a=8

The „baryon“= 3 static quarks in a color singlet

eliminating the self-energies

The dielectric „constant“ of the Yang-Mills vacuum Maxwell´s displecement dielectric „constant“ k

Importance of the curvature Szczepaniak & Swanson Phys. Rev. D65 (2002) the  = 0 solution does not produce a quasi-linear confinement potential

The vacuum wave functional & Fadeev-Popov determinant to 1-loop order:

Robustness of the infrared limit Infrared limit = independent of gauge fields at different points are completely uncorrelated stochastic vacuum exact in D=1+1

3-gluon vertex M.Leder W.Schleifenbaum

Finite temperature YMT ground state wave functional vacuum gas of quasi-gluons with energy

Energy density Lattice: Karsch et al. minimization of the free energy:

Connection to the Center Vortex Picture

D=2points D=4closed surfaces self-intersect non-oriented vortices D=3 closed loops

Center Vortices in Continuum Yang-Mills theory Wilson loop Linking number center element C

Q-Q-potential: SU(2)

Confinement mechanism in Coulomb gauge infrared dominant field configurations: : static quark potential Gribov horizon

similar results in Coulomb gauge: Greensite, Olejnik, Zwanziger, hep-lat/ Kugo-Ojima confinement criteria: infrared divergent ghost propagator center vortices Suman &Schilling (1996) Nakajima,… Bloch et al. Gattnar, Langfeld, Reinhardt, Phys. Rev.Lett.93(2004)061601, hep-lat/

Ghost Propagator in Maximal Center Gauge (MCG)  fixes SU(2) / Z (2)  ghosts do not feel the center Z (2) no signal of confinement in the ghost propagator  removal of center vortices does not change the ghost propagator (analytic result!) center vortices

Landau(Coulomb)gauge maximum center gauge center vortices Gribov´s confinement criteria (infrared ghost propagator) is realized in gauges where the center vortices are on the Gribov horizon

Summary and Conclusion Hamilton approach to QCD in Coulomb gauge is very promising for non-perturbative studies Quark and gluon confinement Curvature in gauge orbit space (Fadeev –Popov determinant) is crucial for the confinement properties Center vortices are on the Gribov horizon and are the infrared dominant field configuratons, which give rise to an infrared diverging ghost propagator (Gribov´s confinement scenario)

Thanks to the organizers