Performance Challenges of Future DRAM´s SINANO WS, Munich, Sept. 14th, 2007 M. Goldbach / J. Faul.

Slides:



Advertisements
Similar presentations
PIDS: Poster Session 2002 ITRS Changes and 2003 ITRS Key Issues ITRS Open Meeting Dec. 5, 2002 Tokyo.
Advertisements

1 PIDS 7/1/01 18 July 2001 Work In Progress – Not for Publication P. Zeitzoff Contributors: J. Hutchby, P. Fang, G. Bourianoff, J. Chung, Y. Hokari, J.
DRAFT - NOT FOR PUBLICATION 14 July 2004 – ITRS Summer Conference ITRS FEP Challenges Continued scaling will require the introduction of new materials.
by Alexander Glavtchev
Alain Espinosa Thin Gate Insulators Nanoscale Silicon Technology PresentersTopics Mike DuffyDouble-gate CMOS Eric DattoliStrained Silicon.
Background for Leakage Current
Resonant Tunnelling Devices A survey on their progress.
Metal Oxide Semiconductor Field Effect Transistors
Lateral Asymmetric Channel (LAC) Transistors
Introduction to CMOS VLSI Design Lecture 19: Nonideal Transistors
Introduction to CMOS VLSI Design MOS Behavior in DSM.
Outline Introduction – “Is there a limit?”
11/3/2004EE 42 fall 2004 lecture 271 Lecture #27 MOS LAST TIME: NMOS Electrical Model – Describing the I-V Characteristics – Evaluating the effective resistance.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 13: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
Lecture 5 – Power Prof. Luke Theogarajan
Introduction to CMOS VLSI Design Nonideal Transistors.
Lecture 7: Power.
Lecture 21, Slide 1EECS40, Fall 2004Prof. White Lecture #21 OUTLINE –Sequential logic circuits –Fan-out –Propagation delay –CMOS power consumption Reading:
EE466: VLSI Design Power Dissipation. Outline Motivation to estimate power dissipation Sources of power dissipation Dynamic power dissipation Static power.
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
*F. Adamu-Lema, G. Roy, A. R. Brown, A. Asenov and S. Roy
Silicon – On - Insulator (SOI). SOI is a very attractive technology for large volume integrated circuit production and is particularly good for low –
Figure 9.1. Use of silicon oxide as a masking layer during diffusion of dopants.
E. Sicard - ultra deep submicron Ultra-Deep submicron technology Etienne Sicard Insa
Introduction to FinFet
Sub-threshold Design of Ultra Low Power CMOS Circuits Students: Dmitry Vaysman Alexander Gertsman Supervisors: Prof. Natan Kopeika Prof. Orly Yadid-Pecht.
Class Presentation for VLSI Course Major Reference is: Circuit Design Issues in Multi-Gate FET CMOS Technologies Christian Pacha, Klaus VonArnim,
Fabrication of CMOS Imagers
Text Book: Silicon VLSI Technology Fundamentals, Practice and Modeling Authors: J. D. Plummer, M. D. Deal, and P. B. Griffin Class: ECE 6466 “IC Engineering”
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
XIAOYU HU AANCHAL GUPTA Multi Threshold Technique for High Speed and Low Power Consumption CMOS Circuits.
NUMERICAL TECHNOLOGIES, INC. Assessing Technology tradeoffs for 65nm logic circuits D Pramanik, M Cote, K Beaudette Numerical Technologies Inc Valery Axelrad.
Leakage reduction techniques Three major leakage current components 1. Gate leakage ; ~ Vdd 4 2. Subthreshold ; ~ Vdd 3 3. P/N junction.
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 6: January 19, 2005 VLSI Scaling.
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
Bi-CMOS Prakash B.
EE141 © Digital Integrated Circuits 2nd Introduction 1 Principle of CMOS VLSI Design Introduction Adapted from Digital Integrated, Copyright 2003 Prentice.
EE201C : Stochastic Modeling of FinFET LER and Circuits Optimization based on Stochastic Modeling Shaodi Wang
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 6.1 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng.
CS203 – Advanced Computer Architecture
반도체 메모리 구조의 이해 Koo, Bon-Jae Dec. 5, 2007.
CMOS VLSI Design 4th Ed. EEL 6167: VLSI Design Wujie Wen, Assistant Professor Department of ECE Lecture 3A: CMOs Transistor Theory Slides adapted from.
Guided by: Prof.J.D.PRADHAN Submitted By: K.Anurag Regn no:
The Devices: MOS Transistor
YASHWANT SINGH, D. BOOLCHANDANI
CS203 – Advanced Computer Architecture
MOS Field-Effect Transistors (MOSFETs)
Floating-Gate Devices / Circuits
S-RCAT(Sphere-shaped-Recess-Channel-Array-Transistor) Technology for 70nm DRAM feature size and beyond J.Y.Kim and Kinam Kim, et all (Samsung Electronics)
20-NM CMOS DESIGN.
VLSI design Short channel Effects in Deep Submicron CMOS
by Alexander Glavtchev
Device Structure & Simulation
VLSI Design MOSFET Scaling and CMOS Latch Up
INTRODUCTION: MD. SHAFIQUL ISLAM ROLL: REGI:
Reading: Hambley Ch. 7; Rabaey et al. Sec. 5.2
Nanowire Gate-All-Around (GAA) FETs
Lecture 19 OUTLINE The MOSFET: Structure and operation
MOSFET Scaling ECE G201.
ELEC 6970: Low Power Design Class Project By: Sachin Dhingra
Introduction to 3D NAND Dec 1st, 2011 Semiconductor.
Lecture 7: Power.
Lecture #15 OUTLINE Diode analysis and applications continued
Lecture 7: Power.
Technology scaling Currently, technology scaling has a threefold objective: Reduce the gate delay by 30% (43% increase in frequency) Double the transistor.
STT-RAM Design Fengbo Ren Advisor: Prof. Dejan Marković Dec. 3rd, 2010
Beyond Si MOSFETs Part IV.
Beyond Si MOSFETs Part 1.
Dr. Hari Kishore Kakarla ECE
Presentation transcript:

Performance Challenges of Future DRAM´s SINANO WS, Munich, Sept. 14th, 2007 M. Goldbach / J. Faul

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 2 Content Introduction DRAM Challenges Array Device Scaling Support Device Scaling Conclusion

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 3 Introduction DRAM Challenges Array Device Scaling Support Device Scaling Conclusion

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 4 MOS Transistor Scaling (1974 to present): Note: Scaling refers to gate half Pitch in nm Introduction I Pitch Half Pitch 250  180  130  90  65  45  32  x 0.7x HP logic HP logic: Speed & area driven DRAM: Area & speed driven  more nodes, however smaller steps

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 5 Introduction II ITRS Roadmap 2001: Scaling continues, however, logic scaling slowed down to 3 yrs cycle

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 6 Scaling history for - power-supply voltage V dd - threshold voltage V t - gate oxide thickness t ox  Vdd, Vt and tox saturate! Key Question: Are we approaching the limit of silicon scaling!? Introduction III

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 7 Ref. 1 Introduction IV Power Consumption: Both, passive and active power density increase 8” hot plate at 1500W Reason: Demand for ever increasing performances

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 8 Introduction DRAM Challenges Array Device Scaling Support Device Scaling Conclusion

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 9 DRAM´s are offered in various densities & architectures: Synchronous DRAM: Data, commands, and addresses synchronized with clock Single data rate (SDR) Double data rate (DDR) Double data rate II (DDR II) DRAM Challenges I (Architectures) Vdd Vss Vddq Vssq Clock Adresses Data (DQ) Commands DRAMDRAM Simplified Block Diagram DRAM Clock Data SDR Data DDR Data DDR II (double freq) Commands DDRII

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 10 DRAM Challenges II (Speed Classes) For DDR, data rate 2x clock frequency (both graphics and main memory) Ref. 2

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 11 DRAM Challenges III (Array Access) Array Access: tAA ~ Tpd Higher densities: More speed critical speed depends on parasitics tAA: Array Access Time Tpd: Propagation delay Ref. 2

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 12 DRAM Challenges IV (General Remarks) Strong Interaction Array / Support Device Design - Defect Treatment Required for long data retention, however, limited doping activation - Structuring Structure both, dense array and logic circuits in same steps - Density / Aspect ratios Driven by very dense cell areas - Low leakage requirements Junction leakage < 1fA per node in array Array transistor: < 1fA to ensure data retention Support transistors:Ioff ~10pA/µm (high speed logic ~100nA/µm) Low Complexity & overall costs

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 13 Introduction DRAM Challenges Array Device Scaling Support Device Scaling Conclusion

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 14 Array Device Scaling I (Asymmetric Device) Asymmetric Device: Low Node leakage & low Ioff by asymmetric well doping Forward Reverse Reverse: Node Forward: Bit Line (BL) - contact DRAM cell schematics Asymmetric cell device Ref. 5

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 15 Array Device Scaling II (EUD Device) X-section along device (perpendicular WL) X-section width device (parallel WL) All major DRAM companies convert from planar to 3D devices in the 60-90nm nodes Example: Qimonda´s Extended U-shape device (EUD) Ref. 3

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 16 Transfer Characteristics Side gate device Impact Data retention Characteristics Target Vnwll Introduction of EUD for node field reduction (no current gain expected) Current modification by side gate Array Device Scaling III (EUD Device) Ref. 3

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 17 Array Device Scaling IV (FinFet in Array) Fig.12: Measured FinFET I  -V  characteristics of the 90nm demonstrator for different p-well voltage (V  ). X-section along device (perpendicular WL) X-section width device (parallel WL) Motivation for FinFet: Slope of 85°C achieved Ids of ~ 30µA achieved no Body effect No body effect Potential Future: FinFet in array Ref. 4

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 18 Array Device Scaling V (Array Path) Ref. 2

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 19 Introduction DRAM Challenges Array Device Scaling Support Device Scaling Conclusion

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 20 Support Device Scaling I (History) DRAM Support Device Scaling: L poly scales by ~0.5x every 3 years DRAM support transistors longer than high speed logic devices but comparable to low standby power Since ~ 2006: L poly (pf) = L poly (nf) (Dual gate work function processes) Off current constraints: Logic L poly scaling slows down L poly scaling drives scaling of other properties as well DRAM Ref. 5

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 21 Support Device Scaling II (Topics & Issues) Scaling Topics Issues Ref. 2

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 22 Support Device Scaling III (Gox scaling) Gate Oxide Scaling: Gate Oxide Leakage: I g (t ox ) = A 0 exp(–B 0 t ox ) Direct tunnelling thru dielectric Ig(nf) ~ 1.5 dec higher than Ig(pf) (Reason: Hole vs. electron tunneling) Ig / tox ~ 1dec / 2 Angstrom For tox  2.5nm Ig uncritical (Ig < 10pA/µm²) Between 2 < tox < 2.5nm Ig needs to be considered Below 2nm: High k gate dielectrics might be employed (Eqivalent oxide thickness (EOT)) Ref. 6

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 23 Support Device Scaling IV (Scaling Path) Ref. 2

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 24 Introduction DRAM Challenges Array Device Scaling Support Device Scaling Conclusion

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 25 Scaling of Si technology not yet reached  will continue down below 30nm ground rules Unlike logic, DRAM support device design obey array driven limitations (e.g. doping activation, structuring, low leakage requirements) Array device scaling path: conventional  asymmetric doping  3D structures Support device scaling path: conventional  adaptions (e.g. stress, high k)  3D structures Conclusion

For internal use only · Copyright © Qimonda AG 2006 · All rights reserved.Qimonda · M. Goldbach · Month Date, Year · Page 26 1.“Silicon CMOS devices beyond scaling”, W. Hänsch et al., IBM J. of Res. and Dev. 50, DRAM short course, VLSI 2007, by S. Hong. 3.“A 58nm Trench DRAM Technology”, T. Tran et al., IEDM “DRAM Scaling Roadmap to 40nm”, W. Müller et al., IEDM “Transistor Challenges – A DRAM Perspective”, J. Faul et al., NIM in Phys. Res. B 237 (2005) “Ultra Low Power SRAM technology”, R.W. Mann et al., IBM J. of Res. and Dev. 47, References

Thank you The World’s Leading Creative Memory Company