ASIPP 研究生:章文扬 导师:高翔,李亚东 磁剪切对微观湍流作用机制的实验研究 December 8, 2009 Hefei, China.

Slides:



Advertisements
Similar presentations
Investigation of Particle Pinch in Toroidal Device Kenji Tanaka 1 1 National Institute for Fusion Science, Toki, Gifu , Japan 2 nd Asian Pacific.
Advertisements

Short wavelength ion temperature gradient driven instability in toroidal plasmas Zhe Gao, a) H. Sanuki, b) K. Itoh b) and J. Q. Dong c) a) Department of.
Lecture Series in Energetic Particle Physics of Fusion Plasmas Guoyong Fu Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543,
Primary experimental results of suppressing MHD instabilities in HT-7 by biased electrode Zhong Fangchuan, Luo Jiarong Shu Shuangbao College of Science,
Rotation driven by local rf forces in tokamaks 陈佳乐 中科院等离子体物理研究所 高喆 清华大学.
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Measurement of magnetic island width by using multi-channel ECE radiometer on HT-7 tokamak Han Xiang( 韩翔 ), Ling Bili( 凌必利 ), Gao Xiang( 高翔 ), Liu Yong(
Momentum transport and flow shear suppression of turbulence in tokamaks Michael Barnes University of Oxford Culham Centre for Fusion Energy Michael Barnes.
1 Global Gyrokinetic Simulations of Toroidal ETG Mode in Reversed Shear Tokamaks Y. Idomura, S. Tokuda, and Y. Kishimoto Y. Idomura 1), S. Tokuda 1), and.
IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 1 – A. Staebler, A.C.C Sips, M. Brambilla, R. Bilato, R. Dux, O. Gruber, J. Hobirk,
#0 F. Castejón 1), M. Ochando 1), T. Estrada 1), M.A. Pedrosa 1), D. López-Bruna 1), E. Ascasíbar 1), A. Cappa 1), A.A. Chmyga 2), N.B Dreval 2), S. Eguilior.
Large-scale structures in gyrofluid ETG/ITG turbulence and ion/electron transport 20 th IAEA Fusion Energy Conference, Vilamoura, Portugal, November.
Non-collisional ion heating and Magnetic Turbulence in MST Abdulgader Almagri On behalf of MST Team RFP Workshop Padova, Italy April 2010.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Predictive Integrated Modeling Simulations Using a Combination of H-mode Pedestal and Core Models Glenn Bateman, Arnold H. Kritz, Thawatchai Onjun, Alexei.
N EOCLASSICAL T OROIDAL A NGULAR M OMENTUM T RANSPORT IN A R OTATING I MPURE P LASMA S. Newton & P. Helander This work was funded jointly by EURATOM and.
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
Recent Experiments on the STOR-M Tokamak
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya , Japan 1.
HT-7 ASIPP Density Modulation Experiment within Lithium coating on HT-7 Tokamak Wei Liao,Yinxian Jie, Xiang Gao and the HT-7 team Institute of Plasma Physics,
Calculations of Gyrokinetic Microturbulence and Transport for NSTX and C-MOD H-modes Martha Redi Princeton Plasma Physics Laboratory Transport Task Force.
Japanese Efforts on the Integrated Modeling - Part II : JAEA Contribution - T. Takizuka (JAEA) acknowledgments : T. Ozeki, N. Hayashi, N. Aiba, K. Shimizu,
L. Chen US TTF meeting, 2014 April 22-25, San Antonio, Texas 1 Study on Power Threshold of the L-I-H Transition on the EAST Superconducting Tokamak L.
Microstability analysis of e-ITBs in high density FTU plasmas 1)Associazione EURATOM-ENEA sulla fusione, C.R. Frascati, C.P , Frascati, Italy.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
Review of Collaboration Activities J.Q. Dong* H.D. He, Y. Shen, and A.P. Sun Southwestern Institute of Physics, China *Institute for Fusion Theory and.
ASIPP On the observation of small scale turbulence on HT-7 tokamak* Tao Zhang**, Yadong Li, Shiyao Lin, Xiang Gao, Junyu Zhao, Qiang Xu Institute of Plasma.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Internal Transport Barriers and Improved Confinement in Tokamaks (Three possible.
Research activity on the T-10 tokamak G. Kirnev on behalf of T-10 team Nuclear Fusion Institute, RRC “Kurchatov Institute”, Moscow , Russia.
1 托卡马克位形优化 (2) 高庆弟 SWIP 核工业西南物理研究院 成都. 2 Nonlinearity of LH wave absorption  The plasma temperature in HL-2A is much lower than that in future reactor.
Recent experiments in the STOR-M Tokamak* Akira Hirose In collaboration with: C. Boucher (INRS-EMT), G. St. Germaine D. Liu, S. Livingstone, A. Singh,
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
NSTX High-k Scattering System on NSTX: Status and Plan* H.K. Park 1, W. Lee 1, E. Mazzucato 1, D.R. Smith 1, C.W. Domier 2, W. Horton 3, S. Kaye 1, J.
RF simulation at ASIPP Bojiang DING Institute of Plasma Physics, Chinese Academy of Sciences Workshop on ITER Simulation, Beijing, May 15-19, 2006 ASIPP.
Comparison of Ion Thermal Transport From GLF23 and Weiland Models Under ITER Conditions A. H. Kritz 1 Christopher M. Wolfe 1 F. Halpern 1, G. Bateman 1,
1 Instabilities in the Long Pulse Discharges on the HT-7 X.Gao and HT-7 Team Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei,
ASIPP 1 EAST 上充气成像诊断研制及边界湍流 实验研究 邵林明 导师:徐国盛
姓名:章文扬 导师:高翔,李亚东 Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei, Anhui , P.R.China 博士中检 HT-7 芯部湍流的实验研究.
MHD Suppression with Modulated LHW on HT-7 Superconducting Tokamak* Support by National Natural Science Fund of China No J.S.Mao, J.R.Luo, B.Shen,
1Peter de Vries – ITBs and Rotational Shear – 18 February 2010 – Oxford Plasma Theory Group P.C. de Vries JET-EFDA Culham Science Centre Abingdon OX14.
Transport in three-dimensional magnetic field: examples from JT-60U and LHD Katsumi Ida and LHD experiment group and JT-60 group 14th IEA-RFP Workshop.
ASIPP HT-7 The effect of alleviating the heat load of the first wall by impurity injection The effect of alleviating the heat load of the first wall by.
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
Hysteresis in the L-H-L transition, D C McDonald, ITPA, Princeton 20091/22 Hysterics in the L-H transition D C McDonald.
(I) Microturbulence in magnetic fusion devices – New insights from gyrokinetic simulation & theory F. Jenko, C. Angioni, T. Dannert, F. Merz, A.G. Peeters,
1 LHCD Properties with a New Lower Hybrid Wave Antenna on HT-7 Tokamak Wei Wei,Guangli Kuang,Bojiang Ding,Weici Shen and HT-7 Team Institute of Plasma.
Multi-scale turbulence experiment in HT-7 takamak Li Yadong Li Jiangang Zhang Xiaodong Ren Zhong Zhang Tou Lin Shiyao and HT-7 Team Institute of plasma.
SMK – APS ‘06 1 NSTX Addresses Transport & Turbulence Issues Critical to Both Basic Toroidal Confinement and Future Devices NSTX offers a novel view into.
TTF M. Ottaviani Euratom TORE SUPRA Overview of progress in transport theory and in the understanding of the scaling laws M. Ottaviani EURATOM-CEA,
Magnetic fluctuations and electron transport in a spherical toakmak By K.L. Wong In collaboration with R. Bell, S. Kaye, B. Le Blanc, D. Mikkelsen Plasma.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
Gyrokinetic Calculations of Microturbulence and Transport for NSTX and Alcator C-MOD H-modes Martha Redi Princeton Plasma Physics Laboratory NSTX Physics.
HT-7 Proposal of the investigation on the m=1 mode oscillations in LHCD Plasmas on HT-7 Exp2005 ASIPP Youwen Sun, Baonian Wan and the MHD Team Institute.
Lower Hybrid Wave Coupling and Current Drive Experiments in HT-7 Tokamak Weici Shen Jiafang Shan Handong Xu Min Jiang HT-7 Team Institute of Plasma Physics,
FPT Discussions on Current Research Topics Z. Lin University of California, Irvine, California 92697, USA.
Neoclassical Predictions of ‘Electron Root’ Plasmas at HSX
Turbulence wave number spectra reconstruction
CREC in the AC operation theory via simulation and experiment
Turbulence associated with the control of internal transport barriers
Center for Plasma Edge Simulation
Investigation of triggering mechanisms for internal transport barriers in Alcator C-Mod K. Zhurovich C. Fiore, D. Ernst, P. Bonoli, M. Greenwald, A. Hubbard,
Influence of energetic ions on neoclassical tearing modes
49th Annual Meeting of APS - DPP Orlando, 11/14/2007
T. Morisaki1,3 and the LHD Experiment Group
(TH/8-1, Jae-Min Kwon et al
T. Morisaki1,3 and the LHD Experiment Group
H. Nakano1,3, S. Murakami5, K. Ida1,3, M. Yoshinuma1,3, S. Ohdachi1,3,
(TH/8-1, Jae-Min Kwon et al
Presentation transcript:

ASIPP 研究生:章文扬 导师:高翔,李亚东 磁剪切对微观湍流作用机制的实验研究 December 8, 2009 Hefei, China

ASIPP Outline Introduction –Motivation –Outstanding works Experiment on HT-7 during LHCD – experiment Open questions References

ASIPP Electron Thermal Transport is Anomalous All operational modes of tokamaks have exhibited anomalous electron thermal transport. There is evidence that electron temperature profiles are stiff in tokamaks. Possible theoretical candidates include: –Trapped Electron Mode (and ITG with trapped electrons) –Electron Temperature Gradient Mode –Magnetic Flutter –Something other than Turbulence

ASIPP Reducing  e in Burning Plasmas Various transport channels behave differently in forming ITBs. In most cases, Electron heat ITBs are formed by localized electron heating on RS plasmas [cf., JT-60U high triangularity, PS plasmas] The following stabilization mechanisms are likely to be ineffective in BP: –Density peaking for ITG, ETG,… –High Te/Ti for ETG (High Ti/Te for ITG ) –NBI-driven Flow Shear (?) q - profile control (eg., RS) remains effective in reducing electron heat transport in Burning Plasmas: –Precession reversal of trapped particles –Suppression of ETG streamers –Stabilization of NTM

ASIPP TORE SUPRA:(a) The reversed current profile is the main factor leading to stabilization of the TEMs. (b) ETG overcomes the stabilizing effect of the negative magnetic shear on the ETG branch. TORE SUPRA: I p = 0.7 MA, B T = 3.9 T, n e (0) = 2.5 × m −3 C Fourment et al Plasma Phys. Control. Fusion 45

ASIPP NSTX:ITB with HHFW (negative magnetic shear) E. Mazzucato Nucl. Fusion 49 (2009)

ASIPP Outline Introduction –Motivation –Outstanding works Experiment on HT-7 during LHCD – experiment Open questions References

ASIPP HT-7 CO2 collective scattering system

ASIPP k  k   s  s 12cm -1 18cm -1 20cm -1 24cm -1 Te:1.2keV  s :1.86mm Te:0.9keV  s :1.61mm Te:0.6keV  s :1.31mm Te:0.45keV  s :1.14mm Te:0.3keV  s :0.93mm ITER Physics Basis 2007 Chapter2 Plasma Confinement and transport E.J. Doyle et al Drift wave turbulence scales

ASIPP Plasma current:120kA,150kA 2008 Experiment during LHCD LHW power:50kW---650kW

ASIPP Ohmic normalized fluctuation level as a function of LHW power Plasma current:120kAPlasma current:150kA The stability of the mode in TEM and TEM/ETG range may be related to q profile.

ASIPP Outline Introduction –Motivation –Outstanding works Experiment on HT-7 during LHCD – experiment Open questions References

ASIPP Open questions Stiffness as a possible feature for characterising of ETGs? –Create condition where TEM stabilized while ETG should be active. Experimental conditions for e-ITBs –Low density required? –Clear reversed magnetic shear required, not ExB shear True for pur e-ITBs, no trigger required ? For e-ITBs in parallel with ion -ITBs also ? only condition ? –Why e-ITBs do not form in parallel with ion-ITBs in some devices ? No direct experimental evidence of ETG dominating electron heat transport

ASIPP Outline Introduction –Motivation –Outstanding works Experiment on HT-7 during LHCD – experiment Open questions References

ASIPP References [1] E J Doyle et al 2007 Nucl. Fusion [2] Wolf R C et al 2001 Nucl. Fusion [3] Baranov Y F et al 2004 Plasma Phys. Control. Fusion [4] Jiquan Li and Y Kishimoto 2002 Plasma Phys. Control. Fusion 44 A479 [5] Rhodes T L et al 2006 Rev. Sci. Instrum E 922 [6] Gusakov E Z et al 2006 Plasma Phys. Control. Fusion 48 A 371-6s [7] Hennequin P et al 2004 Plasma Phys. Control. Fusion 46 B121 [8] Mazzucato E et al 2008 Phys. Rev. Lett [9] Rhodes T L et al 2007 Plasma Phys. Control. Fusion 49 B183 [10] E Mazzucato 2009 Nucl. Fusion [11] Li Y D et al 2004 Plasma Sci. Technol [12] Devynck P 1997 Plasma Phys. Control. Fusion –1371 [13] Litaudon X et al 2001 Plasma Phys. Control. Fusion [14] Gao X et al 2008 Plasma Phys. Control. Fusion [15] lin S Y et al 2006 Plasma science & Technology Vol 8 No.3 [16] C Fourment 2003 Plasma Phys. Control. Fusion –250 [17] Koide Y et al 1998 Plasma Phys.Control.Fusion

ASIPP Thanks for your attention!