Irfu saclay 3D-MAPS Design IPHC / IRFU collaboration Christine Hu-Guo (IPHC) Outline  3D-MAPS advantages  Why using high resistivity substrate  3 types.

Slides:



Advertisements
Similar presentations
G. RizzoSuperB WorkShop – 17 November R&D on silicon pixels and strips Giuliana Rizzo for the Pisa BaBar Group SuperB WorkShop Frascati-17 November.
Advertisements

M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
6 th International Conference on Position Sensitive Detectors, Leicester 11/09/2002 Yu.Gornushkin Outline: G. Claus, C.
A High Resolution CMOS Pixel Sensor for the STAR Vertex Detector Upgrade Christine Hu-Guo on behalf of the IPHC (Strasbourg) CMOS Sensors group Outline.
MAPS for Particles Physics Christine Hu-Guo (IPHC) PHASE1 – STAR IPHC.
FSBB-M and FSBB-A: Two Large Scale CMOS Pixel Sensors Building Blocks Developed for the Upgrade of the Inner Tracking System of the ALICE Experiment Frédéric.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
Irfu saclay Achievements & Perspectives of MIMOSA Sensors (MAPS) for Vertexing Applications Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg) & IRFU.
The MAPS sensor (reminder) MAPS with integrated data sparsification
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
Ultimate Design Review G. Bertolone, C. Colledani, A. Dorokhov, W. Dulinski, G. Dozière, A. Himmi, Ch. Hu-Guo, F. Morel, H. Pham, I. Valin, J. Wang, G.
November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
ULTIMATE Design Review Outline  STAR Pixel Sensor Evolution  MIMOSA-26 Design  ULTIMATE Design & Optimisation  Pixel, Discriminator, Auxilliary Functional.
1 Olav Torheim University of Bergen / IPHC Conceptual design of a 3D integrated pixel detector for the CBM MVD Is it possible to run the experiment at.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
7th Int. Meeting on Front End Electronics, Montauk, May Wojciech Dulinski, IPHC Strasbourg on behalf of: Gregory.
CBM workshop – GSI, April 18th – 20th A. Rivetti Pixel detector development for PANDA A.Rivetti INFN – Sezione di Torino.
FEE-2011, Bergamo University 1 Novel packaging methods for ultra-thin monolithic sensors ladders construction Wojciech.
Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
A. Rivetti Villa Olmo, 7/10/2009 Lepix: monolithic detectors for particle tracking in standard very deep submicron CMOS technologies. A. RIVETTI I.N.F.N.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
CMOS MAPS with pixel level sparsification and time stamping capabilities for applications at the ILC Gianluca Traversi 1,2
Improvement of ULTIMATE IPHC-LBNL September 2011 meeting, Strasbourg Outline  Summary of Ultimate test status  Improvement weak points in design.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
A. Dorokhov, IPHC, Strasbourg, France 1 Description of pixel designs in Mimosa22 Andrei Dorokhov Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg,
ULTIMATE: a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector Upgrade Christine Hu-Guo on behalf of the IPHC (Strasbourg) CMOS Sensors group.
Mistral Christine Hu-Guo on behalf of the IPHC (Strasbourg) PICSEL team Outline  MISTRAL (inner layers)  Circuit proposal  Work plan  Sensor variant.
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures dedicated to the Inner Tracking System of the ALICE Experiment R&D strategy with two main streams.
TWEPP-2009, Paris, September Wojciech Dulinski on behalf of: IPHC Strasbourg-IRFU Saclay-University of Pavia-University.
STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.
FastPixN an ASIC for a fast neutron telescope Maciej Kachel, IPHC Strasbourg.
Ideas for a new INFN experiment on instrumentation for photon science and hadrontherapy applications – BG/PV group L. Ratti Università degli Studi di Pavia.
S.Zucca a,c, L. Gaioni b,c, A. Manazza a,c, M. Manghisoni b,c, L. Ratti a,c V. Re b,c, E. Quartieri a,c, G. Traversi b,c a Università degli Studi di Pavia.
Fast Full Scale Sensors Development IPHC - IRFU collaboration MIMOSA-26, EUDET beam telescope Ultimate, STAR PIXEL detector Journées VLSI 2010 Isabelle.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
Further improvement of the TC performances Marie GELIN on behalf of IPHC - Strasbourg and IRFU – Saclay Investigation of a new substrate (High Resistivity)
ECFA Durham, September Recent progress on MIMOSA sensors A.Besson, on behalf of IReS/LEPSI : M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
1 /28 LePIX – Front End Electronic conference – Bergamo 25 May 2011 – Piero Giubilato LePIX – monolithic detectors in advanced CMOS Collection electrode.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
3D CMOS monolithic 3-bit resolution pixel sensor with fast digital pipelined readout Olav Torheim, Yunan Fu, Christine Hu-Guo, Yann Hu, Marc Winter.
Ivan Peric, Christian Kreidl, Peter Fischer University of Heidelberg
10-12 April 2013, INFN-LNF, Frascati, Italy
Charge sensitive amplifier
L. Rattia for the VIPIX collaboration
Wojciech Dulinski IPHC Strasbourg, France, on behalf of:
CMOS pixel sensors & PLUME operation principles
A 12 µm pixel pitch 3D MAPS with delayed and full serial readout for the innermost layer of ILC vertex detector Yunan Fu (on behalf of the CMOS Sensor.
A 3D deep n-well CMOS MAPS for the ILC vertex detector
HV-MAPS Designs and Results I
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Prochaines Etapes des Capteurs CMOS Christine Hu-Guo (IPHC)
Choix d’une architecture de CAN adaptée au MAPS
R&D of CMOS pixel Shandong University
Presentation transcript:

irfu saclay 3D-MAPS Design IPHC / IRFU collaboration Christine Hu-Guo (IPHC) Outline  3D-MAPS advantages  Why using high resistivity substrate  3 types of 3D-MAPS design

IRFU - IPHC /10/2009 Ecole microélectronique de l'IN2P3 Using 3DIT to improve MAPS performances 3DIT are expected to be particularly beneficial for MAPS : CCombine different fabrication processes RResorb most limitations specific to 2D MAPS Split signal collection and processing functionalities, use best suited technology for each Tier : TTier-1: charge collection system  Epitaxy (depleted or not)  ultra thin layer  X 0  TTier-2: analogue signal processing  analogue, low I leak, process (number of metal layers) TTier-3: mixed and digital signal processing TTier-4: data formatting (electro-optical conversion ?) digital process (number of metal layers) feature size  fast laser driver, etc. Analog Readout Circuit Diode Pixel Controller, A/D conversion Pixel Controller, CDS Digital Analog Sensor ~< 50 µm Analog Readout Circuit Diode ~ 20 µm Analog Readout Circuit Diode Analog Readout Circuit Diode TSV 2D - MAPS 3D - MAPS Sensor tier = MAPS  integration 1st level amplification µm Radiation hard Cluster  S/N

IRFU - IPHC /10/2009 Ecole microélectronique de l'IN2P3 High resistivity sensitive volume  faster charge collection Exploration of a VDSM technology with depleted (partially ~30 µm) substrate:  Project "LePix" driven by CERN for SLHC trackers (attractive for CBM, ILC and CLIC Vx Det.) Exploration of a technology with high resistivity thin epitaxial layer  XFAB 0.6 µm techno: ~15 µm EPI (  ~ O(10 3 ) .cm), Vdd = 5 V (MIMOSA25)  Benefit from the need of industry for improvement of the photo-sensing elements embedded into CMOS chip For comparison: standard CMOS technology, low resistivity P-epi high resistivity P-epi: size of depletion zone size is comparable to the P-epi thickness! TCAD Simulation (by A. DOROKHOV) 15 µm high resistivity EPI compared to 15 µm standard EPI

IRFU - IPHC /10/2009 Ecole microélectronique de l'IN2P3 Landau MP (in electrons) versus cluster size 0 n eq /cm² 0.3 x n eq /cm² 1.3 x n eq /cm² 3 x n eq /cm² MIMOSA25 in a high resistivity epitaxial layer 20 μm pitch, + 20°C, self-bias 4.5 V, 160 μs read-out time Fluence ~ (0.3 / 1.3 / 3·)10 13 n eq /cm 2  Tolerance improved by > 1 order of mag. Need to confirm  det (uniformity !) with beam tests 16x96 Pitch 20µm MIMOSA25 To compare: «standard» non-depleted EPI substrate: MIMOSA15 Pitch=20µm, before and after 5.8x10 12 n eq /cm 2 saturation -> >90 % of charge is collected is 3 pixels -> very low charge spread for depleted substrate

IRFU - IPHC /10/2009 Ecole microélectronique de l'IN2P3 IPHC 3D-MAPS: Self Triggering Pixel Strip-like Tracker (STriPSeT) Combine Tezzaron/Chartered 2-tiers process with XFAB high resistivity EPI process  Tier-1: XFAB, 15 µm depleted epitaxy  ultra thin sensor!!! Depleted  Fast charge collection (~5ns)  should be radiation tolerant For small pitch, charge contained in less than two pixels Sufficient (rather good) S/N ratio defined by the first stage “charge amplification” ( >x10) by capacitive coupling to the second stage  Tier-2: Shaperless front-end: (Pavia + Bergamo) Single stage, high gain, folded cascode based charge amplifier, with a current source in the feedback loop  Shaping time of ~200 ns very convenient: good time resolution Low offset, continuous discriminator  Tier-3: Digital: Data driven (self-triggering), sparsified binary readout, X and Y projection of hit pixels pattern Matrix 256x256  2 µs readout time Tier-1Tier-2Tier-3 Cd~10fF G~1 Cc=100fF Cf~10fF  off <10 mV Digital RD Vth Ziptronix (Direct Bond Interconnect, DBI®*) Tezzaron (metal-metal (Cu) thermocompression)  DBI® – Direct Bond Interconnect, low temperature CMOS compatible direct oxide bonding with scalable interconnect for highest density 3D interconnections ( 10 8 /cm² Possible) W. DULINSKI, A. DOROKHOV, F. MOREL, G. BERTOLONE, X. WEI, … 20 µm Tier 2

IRFU - IPHC /10/2009 Ecole microélectronique de l'IN2P3 IPHC 3D-MAPS Delayed R.O. Architecture for the ILC Vertex Detector  Try 3D architecture based on small pixel pitch, motivated by : Single point resolution < 3 μm with binary output Probability of > 1 hit per train << 10 %  12 μm pitch :  sp ~ 2.5 μm Probability of > 1 hit/train < 5 %  Split signal collection and processing functionalities : Tier-1: A: sensing diode & amplifier, B: shaper & discriminator Tier-2: time stamp (5 bits) + overflow bit & delayed readout  Architecture prepares for 3-Tier perspectives : 12 µm ~1 ms ~200 ms AcquisitionReadout Y. FU, A. BROGNA, A. DOROKHOV, C. COLLEDANI, C. HU, … Detection diode or Q injection Amplifier NMOS only Amp.+Shaper Discriminator Hit identification 12 µm 24 µm 5 bits (7?) Time Stamp 2nd hit flag Delayed Readout Tier 1Tier 2 A B future + Detection diode & Amp ASD TS & R.O. 12 µm

IRFU - IPHC /10/2009 Ecole microélectronique de l'IN2P3 IRFU & IPHC 3D-MAPS: RSBPix FAST R.O. architecture aiming to minimise power consumption  Subdivide sensitive area in ”small” matrices running INDIVIDUALLY in rolling shutter mode  Adapt the number of raws to required frame r.o. time  few µs r.o. time may be reached (???)  Planned also to connect this 2 tier circuit to XFAB detector tier Building Blocks: PLL, 8b/10b, Bias DAC, Pre-Amplifier, Buffer…. Tier-1: NMOS only Tier - 2 Digital Memory and Digital Readout Discriminator DREADLATCH_D Y. DEGERLI, W. DULINSKI, … (Tier-1) 20µm