Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
G v1Squeezed Light Interferometry1 Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
Jan 29, 2007 LIGO Excomm, G R 1 Goal: Experimental Demonstration of a Squeezing-Enhanced Laser-Interferometric Gravitational Wave Detector in.
1 Experimental Demonstration of a Squeezing-Enhanced Laser-Interferometric Gravitational-Wave Detector Keisuke Goda Quantum Measurement Group, LIGO Massachusetts.
A quantum optical beam n Classically an optical beam can have well defined amplitude AND phase simultaneously. n Quantum mechanics however imposes an uncertainty.
Q09/2001 The GEO 600 Laser System LIGO-G Z V. Quetschke°, M. Kirchner°, I.Zawischa*, M. Brendel*, C. Fallnich*, S. Nagano +, B. Willke° +, K.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
Quantum Noise Measurements at the ANU Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Sheila Dwyer, Ben Buchler, Ping Koy Lam, Daniel Shaddock, and David.
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
White Light Cavity Ideas and General Sensitivity Limits Haixing Miao Summarizing researches by several LSC groups GWADW 2015, Alaska University of Birmingham.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Experiments towards beating quantum limits Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
LSC 03/2005 LIGO-G Z S. Chelkowskicharacterization of squeezed states 1 Experimental characterization of frequency-dependent squeezed light Simon.
Squeezed light and GEO600 Simon Chelkowski LSC Meeting, Hannover.
Enhanced LIGO with squeezing: Lessons Learned for Advanced LIGO and beyond.
Eighth Edoardo Amaldi Conference on Gravitational Waves Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Daniel Shaddock, Ben Buchler, Kirk McKenzie, Sheila.
AIC: Activity report K.A. Strain MIT July 2007 G R.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Alexander Khalaidovski, Henning Vahlbruch, Hartmut Grote, Harald Lück, Benno Willke, Karsten Danzmann and Roman Schnabel STATUS OF THE GEO HF SQUEEZED.
Institute for Cosmic Ray Research Univ. of Tokyo Development of an RSE Interferometer Using the Third Harmonic Demodulation LIGO-G Z Osamu Miyakawa,
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
AIC, LSC / Virgo Collaboration Meeting, 2007, LLO Test-mass state preparation and entanglement in laser interferometers Helge Müller-Ebhardt, Henning Rehbein,
Ultra-stable, high-power laser systems Patrick Kwee on behalf of AEI Hannover and LZH Advanced detectors session, 26. March 2011 Albert-Einstein-Institut.
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
Low-loss Grating for Coupling to a High-Finesse Cavity R. Schnabel, A. Bunkowski, O. Burmeister, P. Beyersdorf, T. Clausnitzer*, E. B. Kley*, A. Tünnermann*,
QND, LSC / Virgo Collaboration Meeting, 2007, HannoverH. Müller-Ebhardt Entanglement between test masses Helge Müller-Ebhardt, Henning Rehbein, Kentaro.
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
Low-loss Grating for Coupling to a High-Finesse Cavity R. Schnabel, A. Bunkowski, O. Burmeister, P. Beyersdorf, T. Clausnitzer*, E. B. Kley*, A. Tünnermann*,
H1 Squeezing Experiment: the path to an Advanced Squeezer
Detuned Twin-Signal-Recycling
Quantum noise reduction using squeezed states in LIGO
Overview of quantum noise suppression techniques
The Quantum Limit and Beyond in Gravitational Wave Detectors
Progress toward squeeze injection in Enhanced LIGO
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
MIT Corbitt, Goda, Innerhofer, Mikhailov, Ottaway, Pelc, Wipf Caltech
Generation of squeezed states using radiation pressure effects
Quantum noise reduction techniques for the Einstein telescope
Homodyne readout of an interferometer with Signal Recycling
Heterodyne Readout for Advanced LIGO
Australia-Italy Workshop October 2005
Advanced LIGO Quantum noise everywhere
Squeezed states in GW interferometers
Heterodyne Readout for Advanced LIGO
Squeeze Amplitude Filters
Optical Squeezing For Next Generation Interferometric Gravitational Wave Detectors Michael Stefszky, Sheon Chua, Conor Mow-Lowry, Ben Buchler, Kirk McKenzie,
Squeezed Input Interferometer
Squeezed Light Techniques for Gravitational Wave Detection
RF readout scheme to overcome the SQL
La réduction du bruit quantique
Advanced Optical Sensing
Presentation transcript:

Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet  J.  DiGuglielmo  und  K. Danzmann  Albert-Einstein-Institut  Hannover  Max-Planck-Institut für  Gravitationsphysik  und  Institut für Gravitationsphysik, Universität Hannover

Elba, , Roman Schnabel 2 Techniques against Shot Noise Power- Recycling mirror Laser Photo diode RSE / Signal-recycling mirror Arm cavity Vacuum (shot) noise Squeezed vacuum !

Elba, , Roman Schnabel 3 Phase Modulation at  0        (    2 )

Elba, , Roman Schnabel 4 Amplitude Modulation at  0      

Elba, , Roman Schnabel 5 Amplitude Squeezing at  0       Quantum noise Improved signal to noise ratio

Elba, , Roman Schnabel 6 Standard design of a squeezed field source, (Optical parametric amplifier, resonator with MgO:LiNbO 3 -medium)  Length,   LO,    Generation of Squeezed Fields Pump field, cw, 532nm Squeezed field, cw, 1064nm Crystall

Elba, , Roman Schnabel 7 Optical Parametric Amplification   Generation of phase squeezed light (g 1/2 =2)

Elba, , Roman Schnabel 8 Optical Parametric Amplification Generation of amplitude squeezed light (by deamplification, g 1/2 =1/2)  

Elba, , Roman Schnabel 9 “Squeezing” and Signal-Recycling Power- Recycling mirror Laser Photo diode Signal-recycling mirror Faraday rotator SHG OPA GEO 600 topology

Elba, , Roman Schnabel 10 “Squeezing” and Signal-Recycling Vacuum (a) Squeezed vacuum + signal (b) Signals (c)

Elba, , Roman Schnabel 11 Generation of Squeezed Fields Technical laser noise Shot noise Detector dark noise Squeezed noise

Elba, , Roman Schnabel 12 Control of Squeezed Vacuum Fields Carrier Light is not allowed !

Elba, , Roman Schnabel 13 P-pol for OPO length control Frequency shifted field that still senses parametric amplification Control of Squeezed Vacuum Fields General concept: Use coherent but not interfering control fields: Frequency shifted fields Carrier Light is not allowed ! First audio-band squeezing: [McKenzie et al., PRL 93, (2004)] New experiment !

Elba, , Roman Schnabel 14 Was wir vorhaben:

Elba, , Roman Schnabel 15 Squeezing in the GW Detection Band 4 dB squeezing (a)Shot noise, 88   W(c) Shot noise, double laser power (b)Squeezed noise(d) Shot noise, half laser power [Vahlbruch et al., submitted (2006), available as LSC reviewed manuscript]

Elba, , Roman Schnabel 16 Squeezing in the GW Detection Band [Vahlbruch et al., submitted (2006), available as LSC reviewed manuscript]

Elba, , Roman Schnabel 17

Elba, , Roman Schnabel 18 Squeezing in the GW Detection Band (a)Shot noise (b)Squeezed noise

Elba, , Roman Schnabel 19 Summary Squeezed field injection is fully compatible with detuned signal recycling and a possible control scheme has been demonstrated (in the MHz regime). A control scheme for squeezed vacuum fields has been demonstrated which enabled the observation of squeezing from 10 Hz to 10 kHz.