スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.

Slides:



Advertisements
Similar presentations
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
Advertisements

1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Terahertz spectroscopy of electromagnons excitation in a hexaferrite Ba 2 Mg 2 Fe 12 O 22 Ashida Lab. Tadataka Saito Phy.Rev.B 83, (2011) Phy.Rev.
Transient Four-Wave Mixing Spectroscopy on PbS Quantum Dots Kevin Blondino (Florida State University) Advisors: Dr. Denis Karaiskaj, USF (faculty) Jason.
Ashida lab. Onishi Yohei
Observation of Coherent molecular oscillation : Herzberg-Teller type Wave Packet Motion in Porphyrin J-aggregates MIYASAKA Lab. Tetsuro KATAYAMA.
TRIONS in QWs Trions at low electron density limit 1. Charged exciton-electron complexes (trions) 2. Singlet and triplet trion states 3. Modulation doped.
Optical properties of single CdSe/ZnS colloidal QDs on a glass cover slip and gold colloid surface C. T. Yuan, W. C. Chou, Y. N. Chen, D. S. Chuu.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Optically Driven Quantum Dot Based Quantum Computation NSF Workshop on Quantum Information Processing and Nanoscale Systems. Duncan Steel, Univ. Michigan.
Studies of Minority Carrier Recombination Mechanisms in Beryllium Doped GaAs for Optimal High Speed LED Performance An Phuoc Doan Department of Electrical.
Ultrafast Spectroscopy
Optical study of Spintronics in III-V semiconductors
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
J.S. Colton, ODMR studies of n-GaAs Optically-detected magnetic resonance studies of n-GaAs Talk for APS March Meeting, Mar 20, 2009 John S. Colton, Brigham.
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Optically Pumping Nuclear Magnetic Spin M.R.Ross, D.Morris, P.H. Bucksbaum, T. Chupp Physics Department, University of Michigan J. Taylor, N. Gershenfeld.
Theory of Optically Induced Magnetization Switching in GaAs:Mn J. Fernandez-Rossier, A. Núñez, M. Abolfath and A. H. MacDonald Department of Physics, University.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
J-Specific Dynamics in an Optical Centrifuge Matthew J. Murray, Qingnan Liu, Carlos Toro, Amy S. Mullin* Department of Chemistry and Biochemistry, University.
Chapter 5: Wave Optics How to explain the effects due to interference, diffraction, and polarization of light? How do lasers work?
Ultrabroadband terahertz generation using DAST single crystal
4-1 Chap. 7 (Optical Instruments), Chap. 8 (Optical Atomic Spectroscopy) General design of optical instruments Sources of radiation Selection of wavelength.
ITOH Lab. Hiroaki SAWADA
Institute of Materials Research and Engineering 3 Research Link, Singapore Website: Tel:
UCLA Frequency-domain interferometry diagnostic system for the detection of relativistic plasma waves Catalin V. Filip, Electrical Engineering Department,
High efficiency generation and detection of terahertz pulses using laser pulses at tele- communication wavelengths A.Schneider et al. OPTICS EXPRESS 5376/Vol.14,No.12(2006)
Charge Carrier Related Nonlinearities
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
T. Smoleński 1, M. Goryca 1,2, T. Kazimierczuk 1, J. A. Gaj 1, P. Płochocka 2, M. Potemski 2,P. Wojnar 3, P. Kossacki 1,2 1. Institute of Experimental.
1 Miyasaka Laboratory Yusuke Satoh David W. McCamant et al, Science, 2005, 310, Structural observation of the primary isomerization in vision.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
1 Optically Detected Magnetic Resonance (ODMR) and its Application to  -Conjugated Materials and Organic Light-Emitting Devices (OLEDs) Joseph Shinar.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Long-Lived Dilute Photocarriers in Individualy-suspended Single-Walled Carbon Nanotubes Y. Hashimoto, A. Srivastava, J. Shaver, G. N. Ostojic, S. Zaric,
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
Magnetization dynamics
Generation and detection of ultrabroadband terahertz radiation
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
Itoh Lab. M1 Masataka YASUDA
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Coherent transients from carbonyl sulfide excited by terahertz radiation D.Bigourd, A.Cuisset, G. Mouret, S. Matton, F. Hindle, E. Fertein , R. Bocquet.
光誘起キャリア緩和ダイナミクスおよびその偏光特性
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
Sample : GaAs (8nm) / Al 0.3 Ga 0.7 As (10nm) ×20 multiple quantum wells Light source : Mode-locked femtosecond Ti-sapphire laser Detection : Balancing.
1 Careful study of Ultrafast Magneto-Optics ITOH Lab. Yoshitaka Sakamoto ( 坂本 圭隆 ) [Referenece] “Ultrafast Magneto-Optics in Nickel: Magnetism or Optics?”
Itoh Laboratory Masataka Yasuda
Introduction to materials physics #4
The Structure and Dynamics of Solids
Collisional Orientation Transfer Facilitated Polarization Spectroscopy Jianmei Bai, E. H. Ahmed, B. Beser, Yafei Guan, and A. M. Lyyra Temple University.
Third-order optical nonlinearity in ZnO microcrystallite thin films Weili Zhang, H. Wang, K. S. Wong,a) Z. K. Tang, and G. K. L. Wong accepted for publication.
Daniel Craft, Dr. John Colton, Tyler Park, Phil White, Brigham Young University.
J.S. Colton, Universal scheme for opt.-detected T 1 measurements Universal scheme for optically- detected T 1 measurements (…and application to an n =
橋本佑介 A,B 三野弘文 A 、山室智文 A 、蒲原俊樹 A 、神原大蔵 A 、松末俊夫 B Jigang Wang C 、 Chanjuan Sun C 、河野淳一郎 C 、嶽山正二郎 D 千葉大院自然 A 、千葉大工 B 、ライス大 ECE C 、東大物研 D Y. Hashimoto A,B.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate.
Ashida Laboratory Keita Miyagawa 1 Carrier dynamics evaluation in the photoelectric device from the terahertz electromagnetic wave.
Transient Absorption (Courtesy of Ken Hanson, Florida University): The technique applied to molecular dynamics Source hn Sample Detector.
Transient Absorption (Courtesy of Kenneth Hanson, Florida University): The technique applied to molecular dynamics Source hn Sample Detector.
超平坦界面を有する GaAs(110)量子井戸の顕微分光
The nature of light-matter interaction:
Presentation transcript:

スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野 弘文、山室 智文、神原 大蔵 、松末 俊夫 A 、嶽山 正二郎 B,C 千葉大院自然科学、千葉大工 A 、千葉大理 B 、 東大・物性研 C 21aTH-4

High quality sample with low Mn concentration Spectrum- and time-resolved Photo-induced Faraday rotation (SRPIFR, TRPIFR) Photo-induced Magnetism Mn Concentration [%] Localized energy 10 Alloy Potential 5 Localized energy of Magnetic Polaron Motivation Alloy potential fluctuation : small x = 5 ~ 10% → FEMP energy : Large Method : Aim : Free exciton magnetic polaron (FEMP) in CdMnTe

Bulk-Cd 1-x Mn x Te x = 5% GaAs Cd 1-x Mg x Te Quartz disk The opaque GaAs substrate was removed CdMgTe layer is transparency in CdMnTe resonance of this sample Sample Cd 1-x Mn x Te

Absorption and Photoluminescence PL Light source : He-Ne 633nm Distinct PL line of the FEMP appear !! PL position [eV]Binding energy [meV] Absorption FX FEMP BMP BMP’ K

Mn concentration = 10 % Adiabatic Potential (meV) 1/a B Inversion of the extension of the center of mass motion Theoretical study of the self-trapped FEMP Masakatsu Umehara

B.S. Time Delay 1.4 ~ 300K 0 ~ 6.9T Sample λ/2 λ/4 λ/2 Ti:Sapphire Laser Probe Pump Polarization Beam Splitter Optical Bridge Lock-in Amplifier Experimental setup of PIFR EX absorption Laser spectrum 76MHz

Temporal profiles of PIFR 5K n: refractive index  frequency l: sample thickness c: light speed

FWHM Pump : 6.2meV (2.8nm) Probe : 1.6meV (0.7nm) Mirror lens slit Grating Mirror Probe beam Fourier transfer spectrum filter Laser spectrum Band edge exciton resonance absorption EX

FX FEMP PIFR excitation energy dependence Ferromagnetic spin alignment of the Mn ions via the FEMP !!! FEMP : Exciton spin relaxation + Long decay process > 13ns Mn spin relaxation ≈100ns T. Strutz et.al, Phys. Rev. Lett 68, 3912 Pump Probe FX : Exciton spin relaxation (8ps)

PIFR spectrum at 13ns Exciton feels the effective magnetic field of the ferromagnetically aligned Mn spins FEMP Δt = 13ns FXFEMP Excitation energy FEMP resonance Long decay signal FX resonance No signal Free exciton Mn ion

The excitation energy dependence of the spectrum- and time-resolved photo-induced Faraday rotation have been observed. Under the FEMP resonance excitation, the PIFR signal shows the quite long decay signal that last more than 13ns. We attribute this long decay process to the Mn spin orientation via the FEMP formation. In the case of the FEMP resonance excitation, the PIFR spectrum at 13ns indicates the exciton energy splitting via the effective magnetic field that should be induced by the ferromagnetically aligned Mn spins. summary

Probe beam (linear polarized) Pump beam (circularly polarized) Sample Polarization beam splitter Balancing unit OUT Experimental setup Band edge exciton absorption spectrum Excitation Laser spectrum

Absorption and Photoluminescence Absorption ・ Spectrophotometer Photoluminescence ・ Ar-ion laser Excitation ・ 1/3 meter grating spectrometer and a charge-coupled device Experimental setup

Magnetic Polaron Localization only by sp-d exchange interaction Electron or hole localized to impurities, then formation of magnetic polaron Bound Magnetic Polaron (BMP) Free Exciton Magnetic Polaron (FMP) Mn spin e h Exciton spin e h E

PIFR in Magnetic field To remove the back ground, the PIFR measured with  and  pumping was subtracted Decay time of the signal in FMP resonance is longer than the repetition time of light source (13ns) The photoinduced ferromagnetic alignment of Mn spin by FMP formation The exciton life time is no more than 300 pico seconds The PIFR signal that remain in negative time region is appear 0.25T, 5K