Quantum Computing with Trapped Atomic Ions

Slides:



Advertisements
Similar presentations
Vorlesung Quantum Computing SS 08 1 A scalable system with well characterized qubits Long relevant decoherence times, much longer than the gate operation.
Advertisements

Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
1 Trey Porto Joint Quantum Institute NIST / University of Maryland DAMOP 2008 Controlled interaction between pairs of atoms in a double-well optical lattice.
Superconducting qubits
Quantum Computer Implementations
Ion-trap quantum computation Summer School of CQIQC 2012 Laser Lab Prof. Vasant Natarajan Department of Physics Indian Institute of Science Bangalore May.
1 Trey Porto Joint Quantum Institute NIST / University of Maryland University of Minnesota 26 March 2008 Controlled exchange interactions in a double-well.
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
Generation of short pulses
Quantum Computing with Trapped Ion Hyperfine Qubits.
~ 12  m Neutral atom quantum computing in optical lattices: far red or far blue? C. S. Adams University of Durham 17 November 2004 University of Durham.
Pre-requisites for quantum computation Collection of two-state quantum systems (qubits) Operations which manipulate isolated qubits or pairs of qubits.
Simple quantum algorithms with an electron in a Penning Trap David Vitali, Giacomo Ciaramicoli, Irene Marzoli, and Paolo Tombesi Dip. di Matematica e.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Quantum Information Processing with Trapped Ions E. Knill C. Langer D. Leibfried R. Reichle S. Seidelin T. Schaetz D. J. Wineland NIST-Boulder Ion QC group.

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Single-ion Quantum Lock-in Amplifier
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Quantum Computing with Entangled Ions and Photons Boris Blinov University of Washington 28 June 2010 Seattle.
Guillermina Ramirez San Juan
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Ideas for Experimental Realization of Neutral Atom Quantum Computing 演 講 者:蔡 錦 俊 成功大學物理系

Coherence in Spontaneous Emission Creston Herold July 8, 2013 JQI Summer School (1 st annual!)
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Quantum Devices (or, How to Build Your Own Quantum Computer)
Localization of phonons in chains of trapped ions Alejandro Bermúdez, Miguel Ángel Martín-Delgado and Diego Porras Department of Theoretical Physics Universidad.
M. L. W. Thewalt, A. Yang, M. Steger, T. Sekiguchi, K. Saeedi, Dept. of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6 T. D. Ladd, E. L.
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Decoherence issues for atoms in cavities & near surfaces Peter Knight, Imperial College London work with P K Rekdal,Stefan Scheel, Almut Beige, Jiannis.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Trapped Atomic Ions II Scaling the Ion Trap Quantum Computer Christopher Monroe FOCUS Center & Department of Physics University of Michigan.
DEPARTMENT OF PHYSICS UNIVERSITY OF TORONTO, 60 ST. GEORGE STREET, TORONTO, ONTARIO, CANADA M5S 1A7 1/22 Whither Quantum Computing? 2007 CQCT ANNUAL WORKSHOP.
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Quantum computation: Why, what, and how I.Qubitology and quantum circuits II.Quantum algorithms III. Physical implementations Carlton M. Caves University.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
1. FOCUS and MCTP, Department of Physics, University of Michigan, Ann Arbor, Michigan LQIT and ICMP, Department of Physics, South China Normal.
Distributing entanglement in a multi-zone ion-trap * Division 891 T. Schätz D. Leibfried J. Chiaverini M. D. Barrett B. Blakestad J. Britton W. Itano J.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Meet the transmon and his friends
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Atom chips: A vision for neutral atom QIP E.A. Hinds Imperial College, 11 July 2006 Imperial College London.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum Computation With Trapped Ions Brian Fields.
Mark Acton (grad) Kathy-Anne Brickman (grad) Louis Deslauriers (grad) Patricia Lee (grad) Martin Madsen (grad) David Moehring (grad) Steve Olmschenk (grad)
The Theory of Effective Hamiltonians for Detuned Systems
Basic Principles of Quantum computing I Soonchil Lee Dept. of physics, KAIST.
Pablo Barberis Blostein y Marc Bienert
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
1 Trey Porto Joint Quantum Institute NIST / University of Maryland Open quantum systems: Decoherence and Control ITAMP Nov Coherent Control.
Imperial College London Robust Cooling of trapped particles J. Cerrillo-Moreno, A. Retzker and M.B. Plenio (Imperial College) Olomouc Feynman Festival.
Sympathetic Laser Cooling of Molecular Ions to the μK regime C. Ricardo Viteri and Kenneth Brown Georgia Institute of Technology, School of Chemistry and.
Fiber-integrated Point Paul Trap Tony Hyun Kim 1, Peter F. Herskind 1, Tae-Hyun Kim 2, Jungsang Kim 2, Isaac L. Chuang 1 1 Center for Ultracold Atoms,
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Preparing antihydrogen at rest for the free fall in
Ion Trap Quantum Computing and Teleportation
Coupled atom-cavity system
Cavity QED
Guin-Dar Lin, Luming Duan University of Michigan 2009 DAMOP Meeting
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Quantum Computing with Trapped Atomic Ions Ann Arbor Innsbruck Garching Oxford Boulder APS March Meeting - Montréal: March 21, 2004 Brian King Dept. Physics and Astronomy, McMaster University http://physserv.mcmaster.ca/~kingb/King_B_h.html

Outline: building “quantum computers” overview of ion trap quantum information processor ion trapping initialization and detection single-qubit gates (internal) coupling internal and external qubits directions for the future...

Building Quantum Computers: Need: qubits two-level quantum systems superpositions  isolated from outside world confined, characterizable, scalable preparation prepare computer in standard start state read-out logic gates controllable interactions with outside world! single- and two-qubits gate sufficient (not nec.!)

unparallelled persistence of quantum superposition Why atomic qubits? unparallelled persistence of quantum superposition atomic clocks - accuracy, precision control over quantum states - internal and external BEC, Fermi degeneracy (controllable), Mott insulator transition, quantum squeezing, quantum state engineering... atomic ions - demonstration of building blocks for scalable* quantum “computer” architecture * the Devil is in the details... * the Devil is in the details...

Trapped-Ion QC (Cirac, Zoller('95)) a collection (string) of trapped atomic ions: qubits: (1) internal atomic levels quantum memory tdecoh À tgate T2 > 10 min. clocks accuracy, stability > 1/1015 |1 E |0 “data bus:” (2) common-mode motion transitory tdecoh  tgate 10  2  10  3 |1 |0

How it works... A quantum logic gate between 2 different ions: prepare qubits using single-qubit gates map qubit i state to motion with lasers 2-qubit gate between motion and ion j put information from motion “back into” ion i laser laser laser laser i j

Dynamical RF trapping: want to confine charged atoms  E fields! Eherenfest/Gauss  can’t use static fields  use oscillating fields! in 3-D: +V F +V F +V F +V F +V F +V F +V F e.g. z: assume:

Dynamical RF trapping: average over 1 RF period: full solution: Mathieu equation (same results...) Quantum Motion: same results: quantum harmonic oscillator wavepackets “breathe” at T

Linear Ion Traps for QC: axial confinement - static! U0 U0 V0,W V0,W F(z) = (mwz2/2q) (z2/2) wz2=2aqU0/m a ~ 1 (geom.) radial confinement -dynamic! radial axial F(r) = (m/2q) (wr2 - wz2/2) (r2) wr2 = q2V02/(2mWRFb4r4) b ~ 1 (geom.) wr < WRF Innsbruck MPQ/Garching Oxford micromotion small, at different freq.

Ion Traps - initial micromachining: 2” DC: U0 ≈ 10 V RF: V0 ≈ 750 V  ≈ 230 MHz  wHO ≈ 10 MHz pressure < 2×1011 torr single ion lifetime: > 10 h. (cryogenic  up to 100 days...) 1 cm 0.2 mm

“normal modes” - the string moves as one... Ion Motion in Trap: single ion: like a mass on a spring multiple, cold ions: “normal modes” - the string moves as one... N ions: N modes per direction “stretch” 2 wx centre of mass (COM) wx

Dirty little secrets - motional heating: after cooling to the ground state of motion, the ion heats back up! timescale for motional manipulation ~ 10 s |0  |1 in ~ 100 s (1998...) motion only sensitive to noise spectrum near mot fluctuating patch potentials? RF-assisted tunnelling? heating scales strongly with trap size ~ 10  4 heating seems related to atom source  shield trap! Q.A. Turchette et al. Phys. Rev. A 62, 053807, 2000. 21st century: NIST < 1 /(4 ms) IBM: 1/(10 ms) Innsbruck: 1/(190 ms) plus sympathetic cooling (multi-species...)

Internal-State Qubits: long-lived electronic states: S1/2 D3/2 D5/2 P1/2 P3/2 397 nm 866 nm,1092 nm 422 nm 194 nm 729 nm 674 nm 282 nm t = 1 s t = 345 ms t = 90 ms Ca+, Sr+, Ba+, Hg+ Energy 199Hg+: Qmeas = 1.6·1014 @ 282 nm

Internal-State Qubits: ground-state hyperfine levels: P3/2 Be+ (313 nm), Mg+ (280 nm), Cd+ (215 nm) g/2p = 19 MHz t = 8 ns Energy P1/2 313 nm t > 10,000 yr 1 9Be+: Qmeas = 3.4·1011 @ 303 MHz 173Yb+: Qmeas = 1.5·1013 1.25 GHz S1/2 0 Be+

G State preparation: electronic: optical qubit - kT  free! hyperfine qubit: optical pumping vibrational: Doppler & sideband laser cooling State Detection: G 1 det. 0 cycling transition - excited state decays back to |0

Single-qubit logic gate: 2P1/2 strong E-gradients (optical) motional coupling RF frequency diff. coupling controllable strength RF phase stability D 2-photon stimulated Raman transitions optical: laser single-photon requires L ¿ wmot 1 0 30 20 10 |0 30 20 10 |0 + |1 10 8 6 4 2 5 3 1 t (sec) Avg # counts 30 20 10 |1

Coupling qubit levels: oscillating field induces dipole moment HI  m · E0 ei(kz - wLt) + can change electronic level (resonance?) if ion vibrates, interaction strength modulated HI  m · E0 ei(kz0 cos(wzt)- wLt) Quantum: HI  ½mE0 (S+ + S-) ei(kz0 (a + a†)- wLt) = W (S+ + S-) ei(h (a + a†)- wLt) can change motion! (k z0nvib ~ [z0 / l ]nvib) (... and resonance...) Classically: m · E0 Sm im Jm(kz0) eimwzt e-iwLt sidebands! wL – w0 wz

CZ Realized: motion-dependent spin transitions (conditional logic) c t c’t’ | 0ñ| 0ñ | 0ñ| 0ñ | 0ñ| 1ñ | 0ñ| 1ñ | 1ñ| 0ñ | 1ñ| 0ñ | 1ñ| 1ñ -| 1ñ| 1ñ Controlled-Phase Gate (‘95): p/2-pulse detuning (kHz) · initially |0ñm|0ñ · initially |1ñm|0ñ Pr[|0ñ] phase 2p (p phase shift) p/2 |1ñm 2p (p phase shift) |ñº |1ñe |0ñm 2p (p phase shift) Initial State Final State P(m=1) P() P(m=1) P() 0.02 0.01 0.09 0.16 0.03 0.99 0.04 0.88 0.92 0.05 0.77 0.88 0.94 0.98 0.88 0.19 p/2 · C-Phase · p/2 º Controlled-NOT: |1ñm |¯ñº |0ñe 2p (p phase shift) |1ñm |auxñ |0ñm 2p (p phase shift) |0ñm

CZ Realized - a two-ion logic gate! F. Schmidt-Kaler, et al., Nature 422, 408 (2003) two 40Ca+ ions - CZ scheme but no |aux needed... theoretical: measured: F ~ 70% 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

CZ Realized - a two-ion logic gate! doesn’t use |aux - uses clever NMR trick! |2ñm 2p? (p phase shift) coupling strength ~n> ! 2p for n>=1 but  2p for n>=2 |1ñm 2p (p phase shift) |ñº |1ñe |0ñm 2p (p phase shift) use (p,x) (p/2,y) (p,x) (p/2,y) |1ñm |¯ñº |0ñe |0ñm

to other cavity/qubits Scaling up: problem: as Nions : ion string gets heavier  gates get slower! more motional modes  greater “noise” optical multiplexing: laser (stim. Raman) to other cavity/qubits cavity mode (spont. Raman) fibre R. DeVoe, PRA 58, 910 (98) J.I. Cirac, et al. PRL 78, 3221 (97)

Solutions (1) - optical: MPQ, Garching (Ca+): 4 2S1/2«4 2P1/2 G.R. Guthöhrlein, et al., Nature 414 (01) res. » l/10 U. Innsbruck (Ca+): 4 2S1/2«3 2D5/2 A.B. Mundt, et al., quant-ph/0202112 Excitation Laser Det. (MHz) -0.2 0.2 Excitation Prob. red shift blue shift sweep PZT Þ Doppler shift Pex. > 0.5 Þ coherent positioning: node/antinode res. » l/100 differential coupling to motional sidebands

Wineland, et al. J. Res. NIST 103, 259 (98) Scaling up: problem: as Nions : ion string gets heavier  gates get slower! more motional modes  greater “noise” “quantum CCD:” segmented electrodes accumulator memory register “quantum CCD” Wineland, et al. J. Res. NIST 103, 259 (98) D. Kielpinski, et al. Nature 417, 709 (02)

Solutions (2) - physical multiplexing: M. Rowe, et al., Quantum Information and Computation 1, x (‘01). transporting ions between traps: (1) Ramsey interferometer: 360 mm 400 mm no transport: 96.8 ± 0.3% contrast line triggered: 96.6 ± 0.5% contrast! 60 Hz fields... “spin echo” 96% contrast (2) separating ions: Dn=200 quanta (2.9 MHz) for 10 ms sep. time (separation electrode too wide!) 95% sep. eff. (5000 shots)

Solutions (2) - physical multiplexing: “gold foil” traps: silicon traps: easily micro-machined, smooth alumina silicon

Ion Trap QC: Wither thou?... single-qubit logic gates (´40’s) (>98% fidelity) single-ion 2-qubit logic gate (´95) (80% fidelity) C. Monroe et al. Phys. Rev. Lett. 75, 4714 (‘95). 2-ion 2-qubit logic gates  2 (80% / 97% fidelity) Gulde et al. Nature 422, 408 (‘03). Leibfried et al. Nature 422, 412 (‘03). Deutsch-Jozsa algorithm Gulde et al. Nature 421, 48 (‘03). state preparation (fidelity > 98%) spin qubit: t / tgate > 1000* motional data bus/qubit heating < 1/(4, 10, 190 ms) (NIST, IBM, Innsbruck) NIST Boulder, MPQ, IBM Almaden, U. Innsbruck, Oxford, U. Michigan, McMaster http://physserv.mcmaster.ca/~kingb/King_B_h.html

References: Cirac & Zoller: “New Frontiers in Quantum Information With Atoms and Ions,” Physics Today 57, #3, 38 (March '04). Steane: Appl. Phys. B 64 , 623 ('97). Ghosh: Ion Traps, (Clarendon Press, '97), ISBN: 0198539959. Leibfried et al.: “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281 ('03). Wineland, et al.: “Quantum information processing with trapped ions,” Phil. Trans. Royal Soc. London A 361, 1349, ('03). Wineland, et al., “Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions”, J. Research NIST 103, 259 ('98). Monroe, et al.: “Experimental Primer on the Trapped Ion Quantum Computer,” Forschr. Physik 46, 363 ('98). http://jilawww.colorado.edu/pubs/recent_theses/ D. Kielpinski, “Entanglement and Decoherence in a Trapped-Ion Quantum Register” B.E. King, “Quantum State Engineering and Information Processing withTrapped Ions”

Nobel Sidebar - Ramsey’s expt.: superpositions - how do we characterize phase? tR: phase evolves (Schrodinger) T/2: create superposition T/2, phase f: try to undo superposition! t N w t * f interferometer

spin-dependent motional Berry’s phase 2 is better than one!... D. Leibfried, et al., Nature 422, 412 (2003) spin-dependent motional Berry’s phase 2 lasers with dwL  0 create “standing wave” dipole force P1/2 S1/2 D 2 lasers with dwL  wz create “walking standing wave” which can resonantly drive ion motion

geometric Berry’s phase! 2 is better than one!... resonant oscillating force = displacement operator in phase space |a| set by strength of force phase set by phase between motion and lasers D(b) x p D(a) D(a) D(b) = ei Im(ab*)D(a+b) geometric Berry’s phase!

2 is better than one!... “stretch mode:” need different force on each ion to drive can only excite if ions in different electronic levels! move ions in closed loop in phase space “walking standing wave” has different strengths for , 0 1 P1/2 different coupling strengths S1/2 z pz |  eij |

 motional “Berry’s phase”  phase shift 2 is better than one!... IF ions in different electronic states, move quantum motional state in closed loop in phase space  motional “Berry’s phase”  phase shift Y  Y   Y   eip/2 Y   Y   eip/2  Y   Y   Y  = e-ip (eip/2 ) ( eip/2) Y  controlled-Phase + single-qubit rotations (F ~ 97%)

and some 2’s are “better” than others …in the lab… 2-qubit gates utilize the motion > cough, cough, mumble…< higher motional n gives faster gates  shining laser on only one ion! Motional gates (Mølmer-Sørensen, Milburn, etc.) can be done illuminating all ions! - keep n high  fast motional gates - with expt. gate, can have different illuminations single-qubit operations can be done with weak trap the “accordion quantum computer!”

Coupling qubit levels: laser-ion interaction: messy details: in interaction picture: rotating-wave approximation: expand exponential: