2. Super KEKB Meeting, 17-19.3.2009 DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
SAAB SPACE 1 The M2 ASIC A mixed analogue/digital ASIC for acquisition and control in data handling systems Olle Martinsson AMICSA, October 2-3, 2006.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
Evaluation of 65nm technology for front-end electronics in HEP Pierpaolo Valerio 1 Pierpaolo Valerio -
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Readout of DC coupled double sided sensors with CBMXYTER: Some first thoughts Peter Fischer, Heidelberg University.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
DEPFET Electronics Ivan Peric, Mannheim University.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
FEE2006, Perugia Simultaneous Photon Counting and Charge Integrating Readout Electronics for X-ray Imaging Hans Krüger, University of Bonn, Germany University.
Process Monitor/TID Characterization Valencia M. Joyner.
SuperKEKB 2nd open meeting March 17-19, 2009 Hans-Günther Moser MPI für Physik PXD Session SOI: more information: see TIPP09 -> submission in February,
Radiation Hardness Test Chip Matthias Harter, Peter Fischer Uni Mannheim.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Progress on STS CSA chip development E. Atkin Department of Electronics, MEPhI A.Voronin SINP, MSU.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
IWLC 2010 – Ivan Peric 1 Particle pixel detectors in high-voltage CMOS technology Ivan Peric University of Heidelberg.
Foundry Characteristics
J. Crooks STFC Rutherford Appleton Laboratory
Some Irradiation Results from a Chip in UMC018 Technology Peter Fischer for Christian Kreidl Heidelberg University P. Fischer, ziti, Heidelberg.
AMS HVCMOS status Raimon Casanova Mohr 14/05/2015.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Prague, Marcel Trimpl, Bonn University DEPFET-Readout Concept for TESLA based on Current Mode Signal Processing Markus Schumacher on behalf.
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
LHCb Vertex Detector and Beetle Chip
CMS Pixels: Fermilab Farah Fahim, Gregory Deptuch, Jim Hoff, Alpana Shenai, Marcel Trimpl.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Development of DMAPS sensors M. Havránek*, T. Hemperek, H. Krüger, Y. Fu, T. Kishishita, T. Obermann, N. Wermes * Now at Czech Technical University (FNSPE)
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Federico Faccio CERN/PH-MIC
FPIX2: A rad-hard pixel readout chip for BTeV David Christian Fermilab Homestead September 14, 2000 Vertex 2000 f.
ASIC Development for Vertex Detector ’07 6/14 Y. Takubo (Tohoku university)
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
1 DEPFET Readout Electronics Ivan Peric, Jochen Kinzel, Christian Kreidl, Peter Fischer University of Heidelberg.
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossopo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPPO3 prototype.
1 ASICS - Status Ivan Perić University of Heidelberg Germany.
Belle II VXD Workshop, Wetzlar ASICs - Overview.
Ivan Peric, DEPFET Workshop SWITCHER 4 Ivan Peric, Peter Fischer University Heidelberg.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Data Handling Processor v0.1 Preliminary Test Results - August 2010 Tomasz Hemperek.
ASIC Review DCD. ASIC Review DCD is implemented in UMC 0.18 um CMOS technology 3.2mm x 5mm DCD-B uses bump bonding on the UMC technology.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
DEPFET Meeting, Prague, 2015 DCD. DEPFET Meeting, Prague, 2015 KIT The development/production of DCD and SWITCHER chips will be done from middle of 2015.
Design Choices for SuperBelle P. Fischer, I. Peric, Ch. Kreidl, J. Kinzel Heidelberg University 1Design Choices for SuperBelle.
13 th International Workshop on DEPFET Detectors and Applications, Ringberg, June 2013, Ivan Peric 1 New DCD Chips Ivan Perić.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
1 Run on 25. October. 2 Full-size DCD Price: at least 32 k€ Return: April 201  Less test possibilities Full-size chip Wire-bondable DCD Price: 6.75 k€
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Nonvolatile memories:
Ivan Perić University of Heidelberg Germany
Ivan Peric, Christian Kreidl, Peter Fischer University of Heidelberg
Data Handling Processor v0.1 First Test Results
Jan Soldat, Heidelberg University for the DSSC ASIC design groups
Analog Readout Chips – the Status
HV-MAPS Designs and Results I
Some Irradiation Results from a Chip in UMC018 Technology
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Presentation transcript:

2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University

2. Super KEKB Meeting, DEPFET Electronics Outline -Module Electronics - Introduction -Principle of DEPFET readout -Switcher with LV transistors (Switcher 3) -Switcher with HV transistors -DCD Chip -Bumping technologies

2. Super KEKB Meeting, DEPFET Electronics DEPFET readout and control-ASICS

2. Super KEKB Meeting, DEPFET Electronics DEPFET readout and control-ASICS DCD#0 – DCD#5 Switcher#0 Switcher#4 ACTIVE AREA Sensor – active area Sensor balcony Chip Switcher – row control chip with high voltage line drivers 0.35 μm technology DCD – DEPFET current receiver and digitizer chip 0.18 μm technology DHP – Digital data handling and readout control chip 0.09 μm technology 960X512 (160 channels each) (32 channels each) Bump bonding Fan-out Switcher DCD DHP

2. Super KEKB Meeting, DEPFET Electronics Layout (Preliminary) DCDs Switcher Width = 1.6mm!

2. Super KEKB Meeting, DEPFET Electronics Principle of DEPFET readout

2. Super KEKB Meeting, DEPFET Electronics Readout principle 1 – signal collection – internal gate p+ Internal gate (n+) PMOS n+ DEPFET pixel n-(depleted) G DSClr DHP DCD#0 – DCD#5 SWITCHER#0 SWITCHER#4 ACTIVE AREA Signal generation Signal collection

2. Super KEKB Meeting, DEPFET Electronics Readout principle – start of the readout p+ Internal gate (n+) PMOS n+ DEPFET pixel n-(depleted) G DSClr DHP DCD#0 – DCD#5 SWITCHER#0 SWITCHER#4 ACTIVE AREA Signal collection Signal generation Read out

2. Super KEKB Meeting, DEPFET Electronics G DHP DCD#0 – DCD#5 SWITCHER#0 SWITCHER#4 ACTIVE AREA Readout principle – switcher generates high voltage – row on p+ Internal gate (n+) PMOS n+ DEPFET pixel n-(depleted) DSClr Signal collection Signal generation Read out Row on

2. Super KEKB Meeting, DEPFET Electronics Readout principle – drain current is stored in DCD DHP DCD#0 – DCD#5 SWITCHER#0 SWITCHER#4 ACTIVE AREA p+ Internal gate (n+) PMOS n+ DEPFET pixel n-(depleted) DSClr Signal collection Signal generation Read out Row on Signal memorizing

2. Super KEKB Meeting, DEPFET Electronics Readout principle – start of clearing DHP DCD#0 – DCD#5 SWITCHER#0 SWITCHER#4 ACTIVE AREA p+ Internal gate (n+) PMOS n+ DEPFET pixel n-(depleted) DSClr Signal collection Signal generation Read out Row on Signal memorizing Clearing

2. Super KEKB Meeting, DEPFET Electronics Readout principle – clearing, offset current subtracted in DCD DHP DCD#0 – DCD#5 SWITCHER#0 SWITCHER#4 ACTIVE AREA p+ Internal gate (n+) PMOS n+ DEPFET pixel n-(depleted) DSClr Signal collection Signal generation Read out Row on Signal memorizing Clearing Signal – offest subtraction

2. Super KEKB Meeting, DEPFET Electronics Readout principle – A/D conversion p+ Internal gate (n+) PMOS n+ DEPFET pixel n-(depleted) G DSClr DHP DCD#0 – DCD#5 SWITCHER#0 SWITCHER#4 ACTIVE AREA Signal collection Signal generation Read out Row on Signal memorizing Clearing Signal – offest subtraction A/D conversion

2. Super KEKB Meeting, DEPFET Electronics Row control “Switcher” chip

2. Super KEKB Meeting, DEPFET Electronics Switcher with LV transistors – Switcher 3 Switcher 3 Radiation tolerant layout in 0.35 μm technology 128 channels + Very fast - Operation up to 11.5 V Novel design: Uses stacked LV transistors, HV twin-wells and capacitors as level- shifters + No DC power consumption HV channel with 3+3 Switch transistors and 4 AC coupling stages (180x180µm, M4 not shown) interdigitated AC coupling caps Ivan Peric, Mannheim 80µm opening

2. Super KEKB Meeting, DEPFET Electronics Switcher 3 – output driver Use an SRAM cell flipped by a transient voltage No dc power consumption! 9V out ‘SRAM’ 3V ‘SRAM’ 6V ‘SRAM’ 0V 3V 6V Reset ~200 fF

2. Super KEKB Meeting, DEPFET Electronics Switcher with LV transistors – Switcher 3

2. Super KEKB Meeting, DEPFET Electronics Rising/Falling Edge vs. C load 2ns ! 9V ! 0pF (1.8ns) 10pF (4ns) 22pF (8ns) 47pF (18ns) 0pF (1.5ns) 10pF (3.8ns) 22pF (6.5ns) 47pF (14ns)

2. Super KEKB Meeting, DEPFET Electronics Switcher 3 chip irradiation up to 22 MRad Only degradation in speed which can be avoided using larger transistors

2. Super KEKB Meeting, DEPFET Electronics Switcher 4 Switcher 3 Uses radiation tolerant high voltage transistors in HV 0.35 μm technology 64 channels + fast enough + Possible operation up to 50 V (30V tested) + low DC power consumption Enclosed design of NMOS HV transistors

2. Super KEKB Meeting, DEPFET Electronics Switcher 4 chip – high voltage transistors Hi voltage 20V0V 17-20V0-3V 0-20V Thin oxide Thick oxide n- p- n- Vertical NMOS PMOS

2. Super KEKB Meeting, DEPFET Electronics D S D S Thick oxidLeakage current Standard NMOS Annular gate NMOS G G Annular gate vertical NMOS S B G D Difefrent types of radiation-soft and -hard NMOS transistors

2. Super KEKB Meeting, DEPFET Electronics logic out 20V 17V 3V 0V in Switcher 4 chip output driver

2. Super KEKB Meeting, DEPFET Electronics logic out 20V 17V 3V 0V in Switcher 4 chip output driver 30V amplitude

2. Super KEKB Meeting, DEPFET Electronics Irradiation of NMOS transistors X-ray irradiation up to ~600 krad No threshold shift or leakage current for annular structures 600 krad before stacked ‘normal’ annular NMOS ‘HV’ NMOS: thin gate oxide, extended thick drain, enclosed gate ‘HV’ NMOS, normal layout

2. Super KEKB Meeting, DEPFET Electronics DEPFET signal digitizer chip - DCD

2. Super KEKB Meeting, DEPFET Electronics DCD3 chip - Technology 0.18 μm - 72 Channels - 2 ADCs and regulated cascode/channel - 6 channels multiplexed to one digital LVDS output - ADC sampling period 160 ns (8 bits) - Channel sampling period 80 ns - LVDS output: 600 M bits/s - Chip: 7.2 G bits/s (12 outputs) - Radiation tolerant design - ~ 1mW/ADC

2. Super KEKB Meeting, DEPFET Electronics DCD3 chip

2. Super KEKB Meeting, DEPFET Electronics DCD3 ADC Reg. cascode Double sampling DEPFET W NC R R R R L L R R W R R L L W R Gate On

2. Super KEKB Meeting, DEPFET Electronics DCD 3 measurements ADC characteristicNoise

2. Super KEKB Meeting, DEPFET Electronics DCD 3 irradiation up to 7 MRad No significant changes after 7 Mrad and 6 days of annealing ADC characteristicAnalog characteristic of CSC Noise – channel 1Noise – channel 2

2. Super KEKB Meeting, DEPFET Electronics Chip Geometry: 1525 µm x 5000 µm Technology 0.18 μm Analog circuits in upper pixels Digital circuits on the bottom 10 x 16 ANALOG parts (bump + cascode + current memory + ADC) Analog Power pads Digital Power Pads Digital Outputs Control DIGITAL 10 x 4 outputs + control Pitch = 150µm Chip architecture – (proposed for SBelle prototype)

2. Super KEKB Meeting, DEPFET Electronics Channel layout – (proposed for SBelle prototype) AAA AAA Bump-bond pad (Analog In) Cell1Cell2 A A h, l CmpHiCmpLoCell3Cell4CmpHiCmpLo A TC MM cap TC (Receiver) Digital output ADC1 ADC2 Sampling cell 1 Sampling cell 2 Reg. cascode IO line

2. Super KEKB Meeting, DEPFET Electronics Data handling processor - DHP

2. Super KEKB Meeting, DEPFET Electronics DHP architecture

2. Super KEKB Meeting, DEPFET Electronics DHP - block diagram of the data processing block

2. Super KEKB Meeting, DEPFET Electronics Bumping

2. Super KEKB Meeting, DEPFET Electronics Base technology – chip with gold stuts

2. Super KEKB Meeting, DEPFET Electronics 1. Gold Studs 2. Buy chips with PbSn bumps or similar (possible for UMC via SPIL wafer bumping service, IBM,…) 3. Get everything done by company TechnoMin. pitch Bump pad Max. bumps Pressure / bump UBM Sensor Wafers Needed ReworkCostWho Au Stud10070 (60)600>25gno NoLow HD, (BN, HLL) Bumped Chips (?)  0yesNoYesMed HD, (BN, HLL) Deposit PbSn ~10070(?)  0yesNoYesLow PACTEC (HD ?) By vendor 5015  0yes YesHighIZM,… Bumping possibilities

2. Super KEKB Meeting, DEPFET Electronics Conclusions - DCD prototype chip has been tested with test signals that correspond to DEPFET currents and irradiated up to 7 Mrad. The chip works fine and has high enough conversion speed. Operation with matrices still to be tested – we do not expect problems. Only „fine tuning“ of the design for the super KEKB operation is necessary. - Switcher prototype with LV transistors has been tested and irradiated up to 22 MRad. The chip works fine and has adequate speed for SBelle operation. - Another prototype with HV transistors has been designed and tested. - The irradiation of the chip still has to be done but the basic and most critical part (high-voltage NMOS) has been irradiated up to 600 KRad and no damage has been observed. - DHP chip will be designed using digital design tools in intrinsically radiation hard 90 nm technology. - Choice between 4 different bumping technologies – advantages and disadvantages still to be evaluated…

2. Super KEKB Meeting, DEPFET Electronics Thank you

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 2) Reg. cascode Double sampling DEPFET W NC R R R R L L R R W R R L L W R Gate On

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 3) Reg. cascode Double sampling DEPFET NC W R R C C L L W R R C C L L W R Z

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 4) Reg. cascode Double sampling DEPFET R R W NC L L R R R W R L L R R W R C

2. Super KEKB Meeting, DEPFET Electronics Clear On DCD2 (CNT = 5) 77 Reg. cascode Double sampling DEPFET R R NC W L L C C R W R L L C C R W Z

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 6) Reg. cascode Double sampling DEPFET W NC R R R R L L R R W R R L L R W

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 7) Double sampling NC W R R C C L L W R R C C L L Reg. cascode DEPFET R W

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 8) Double sampling R R W NC L L R R R W R L L R R Reg. cascode DEPFET R W

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 9) Double sampling R R NC W L L C C R W R L L C C Reg. cascode DEPFET R W

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 10) Reg. cascode Double sampling DEPFET W NC R R R R L L R R W R R L L W R Gate On

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 11) Reg. cascode Double sampling DEPFET NC W R R C C L L W R R C C L L W R Z

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 12) Reg. cascode Double sampling DEPFET R R W NC L L R R R W R L L R R W R C

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 13) Reg. cascode Double sampling DEPFET R R NC W L L C C R W R L L C C R W Z Clear On

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 14) Reg. cascode Double sampling DEPFET W NC R R R R L L R R W R R L L R W

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 15) Double sampling NC W R R C C L L W R R C C L L Reg. cascode DEPFET R W

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 0) Double sampling R R W NC L L R R R W R L L R R Reg. cascode DEPFET R W

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 1) Double sampling R R NC W L L C C R W R L L C C Reg. cascode DEPFET R W

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 2) Reg. cascode Double sampling DEPFET W NC R R R R L L R R W R R L L W R Gate On

2. Super KEKB Meeting, DEPFET Electronics DCD2 (CNT = 3) Reg. cascode Double sampling DEPFET NC W R R C C L L W R R C C L L W R Z