Nuclear Medicine Quality control
Uniformity gamma camera divide by flood source image No correction Energy correction E + Linearity E + L + Flood correctie
Uniformity PET camera Uncorrected Corrected sinogram Blank scan projection Correction: energy uniformity dead time
QC gamma camera Whole Body bed motion uniformity pixel size SPECT Planar uniformity energy resolution linearity spatial resolution dead time sensitivity pixel size Whole Body bed motion uniformity pixel size SPECT center of rotation detector position Phantom
dead time straightforward: decaying source two sources with (nearly) same activity
Center of rotation
Detector position
well counter dose calibrator survey meter
well counter NaI(Tl) PMT lead shielding
well counter lead shielding NaI(Tl) PMT a H sens = 1 2 1+ 𝐷 𝐷 2 + 𝐻 2 sensitivity
gas filled detectors - - - + - applied voltage output current ionization chamber proportional counter Geiger-Müller - - - + + + - - - + - - -
dose calibrator isotope selection
dose calibrator - + + - output current = const x air kerma (or Ar kerma) function of isotope energy!
dose calibrator with Cu filter
survey meters ionisation detector (Xenon)
survey meters scintillator (NaI(Tl))
contamination monitor, spectrometer NaI(Tl) scintillation crystal
contamination monitor
Image analysis
SUV: standard uptake value somewhat controversial only valid if procedure is standard: time between injection and image condition of patient ... used all the time!
example: analysis of heart images
Image analysis 18F-FDG 13N-NH3
perfusion + metabolism
Gated PET
Partial volume constant activity big pixels
Partial volume constant concentration finite resolution perfect resolution Partial volume constant concentration finite resolution finite resolution Recovery Spill-over
Partial volume constant activity finite resolution
Gated MIBI, thickening 3 4 2 5 1 6 2 4 6 8 200 400 600 800 1000 7
Tracer kinetic modelling
Dynamic PET 13N-NH3 perfusion study 20 s. 40 s. 3 min 20 min
Dynamic PET 11C-acetate perfusion/oxidative metabolism study
Kinetic modelling k3 K1 k2 k4 Extra- Blood Metabolized vascular 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 100 200 300 400 500 0.05 0.1 0.15 0.2 0.25 0.3 100 200 300 400 500
3 comp model C’p C’E C’M Glucose: k’3 K’1 k’2 k’4 - metabolized = 0
3 comp model Cp CE CM K1 k2 k3 k4 FDG: not metabolized but accumulated
Laplace transform
3 comp model Cp K1 k3 FDG: CE CM k2
3 comp model Lumped constant: Glucose consumption:
Motion correction 16 17 15 14 12 13 11 11C-Acetate
Tracer kinetic modelling: NH3 0.1 0.2 0.3 0.4 0.5 0.6 0.7 100 200 300 400 500
parametric modelling: acetate
Image quality
Bias and variance A is better than B! more regularisation variance which method is better? B A bias
Software evaluation nice correct image quality is task dependent simulation, phantom, (animal), clinical
Dosimetry
Dosimetry Q(photons, electrons, positrons) = 1 Q(neutrons, protons) = ..10.. Q(a-particles) = 20 MIRD formalism (SNM)
effective dose A B
L = 4 cm R = 2 cm D = 10 cm d = 2 cm = 0.15 /cm (140 keV) m = 0.095 /cm (511 keV) 1 MBq 123I: gamma: 0.84 of 159 keV electron: 0.13 of 127 keV halflife: 13 h 1 MBq 18F: 1 positron of 250 keV 109 min
dosimetry For organs with uptake: 3D VOIs pixelwise MBq/cc measurement => Total organ activity
residence times evaluation of tracer for ORL-1 receptors in the brain Residence time (hr) for the liver: S1: 0.4567 S2: 0.5310 S3: 0.3940 Residence time (hr) for the thyroid: S1: 0.0017 S2: 0.0017 S3: 0.0013 evaluation of tracer for ORL-1 receptors in the brain
Olinda: MC-based dosimetry MIRD Dose Estimate Report No. 19: Radiation Absorbed Dose Estimates from 18F-FDG
dosimetry background radiation: ..2.. mSv / year = 5.5 mSv / day = 0.2 mSv / hour patient: 18F-FDG, 300 MBq 6 mSv 99mTc-MIBI 740 MBq 11 mSv
the end