CMOS Analog Design Using All-Region MOSFET Modeling 1 CMOS Analog Design Using All-region MOSFET Modeling Chapter 3 CMOS technology, components, and layout.

Slides:



Advertisements
Similar presentations
BASIC BLOCKS : PASSIVE COMPONENTS 1. PASSIVE COMPONENTS: Capacitors  Junction Capacitors  Inversion Capacitors  Parallel Plate Capacitors Resistors.
Advertisements

Course: Analog Circuit Design Time schedule: Tu We Th Office hours: Tu Exams: Feb. (2), Jun.-Jul. (2), Sep.
CMOS Fabrication EMT 251.
MODULE SYSTEM LOGIC GATE CIRCUIT DQ CMOS Inverter ASIC Full-Custom Semi-Custom Programmable FPGA PLD Cell-Based Gate Arrays General Purpose DRAM & SRAM.
Analog VLSI Design Nguyen Cao Qui.
VLSI Design Lecture 2: Basic Fabrication Steps and Layout
1 ELEC 422 Applied Integrated Circuit Design Section 2: MOS Fundamentals Chuping Liu [Adapted from Rabaey’s Digital Integrated Circuits, ©2003, J. Rabaey.

A Primer on CMOS Technology. Objectives: 1.To Introduce about CMOS technology.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
Introduction to CMOS VLSI Design Lecture 5 CMOS Transistor Theory
Adapted from Digital Integrated Circuits, 2nd Ed. 1 IC Layout.
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Lecture 11: MOS Transistor
Introduction to CMOS VLSI Design Lecture 0: Introduction
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory
The metal-oxide field-effect transistor (MOSFET)
For the exclusive use of adopters of the book Introduction to Microelectronic Fabrication, Second Edition by Richard C. Jaeger. ISBN © 2002.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
11/3/2004EE 42 fall 2004 lecture 271 Lecture #27 MOS LAST TIME: NMOS Electrical Model – Describing the I-V Characteristics – Evaluating the effective resistance.
Modern VLSI Design 2e: Chapter 2 Copyright  1998 Prentice Hall PTR Topics n Basic fabrication steps n Transistor structures n Basic transistor behavior.
Elettronica D. AA Digital Integrated Circuits© Prentice Hall 1995 Manufacturing Process CMOS Manufacturing Process.
Circuit characterization and Performance Estimation
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
© Digital Integrated Circuits 2nd Devices VLSI Devices  Intuitive understanding of device operation  Fundamental analytic models  Manual Models  Spice.
Introduction Integrated circuits: many transistors on one chip.
Optional Reading: Pierret 4; Hu 3
CMOS Process Integration ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May March 25, 2004.
CMOS Analog Design Using All-Region MOSFET Modeling 1 Chapter 6 Current Sources and Voltage References.
Lecture 3: CMOS Transistor Theory
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
ECE 342 Electronic Circuits 2. MOS Transistors
Z. Feng VLSI Design 1.1 VLSI Design MOSFET Zhuo Feng.
CMOS Fabrication Details
CS/EE 6710 CMOS Processing. N-type Transistor + - i electrons Vds +Vgs S G D.
Analog Layout.
NOTICES Project proposal due now Format is on schedule page
The Devices Digital Integrated Circuit Design Andrea Bonfanti DEIB
VLSI Design Lecture 2: Basic Fabrication Steps and Layout Mohammad Arjomand CE Department Sharif Univ. of Tech. Adapted with modifications from Harris’s.
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
Modern VLSI Design 4e: Chapter 2 Copyright  2009 Prentice Hall PTR Topics n Basic fabrication steps. n Transistor structures. n Basic transistor behavior.
OXIDE AND INTERFACE TRAPPED CHARGES, OXIDE THICKNESS
IC Process Integration
Chapter 4 Field-Effect Transistors
Semiconductor Manufacturing Technology Michael Quirk & Julian Serda © October 2001 by Prentice Hall Chapter 9 IC Fabrication Process Overview.
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
Introduction to CMOS VLSI Design CMOS Fabrication and Layout Harris, 2004 Updated by Li Chen, 2010.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
Structure and Operation of MOS Transistor
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
CMOS Fabrication nMOS pMOS.
IC Fabrication/Process
NMOS FABRICATION 1. Processing is carried out on a thin wafer cut from a single crystal of silicon of high purity into which the required p-impurities.
CMOS Devices PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Bipolar transistors.
CMOS VLSI Design CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2007.
CMOS VLSI Fabrication.
CMOS FABRICATION.
Course: Analog Circuit Design Time schedule: Mo We Th Office hours: We Exams: Feb. (2), Jun.-Jul. (2), Sep.
Introduction to CMOS VLSI Design CMOS Transistor Theory
CMOS Fabrication EMT 251.
Analog Integrated Circuits Lecture 1: Introduction and MOS Physics ELC 601 – Fall 2013 Dr. Ahmed Nader Dr. Mohamed M. Aboudina
Microelectronic Circuit Design McGraw-Hill Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock.
Prof. Haung, Jung-Tang NTUTL
CMOS Devices PN junctions and diodes NMOS and PMOS transistors
CMOS Technology Flow varies with process types & company
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
CMOS Technology Flow varies with process types & company
Presentation transcript:

CMOS Analog Design Using All-Region MOSFET Modeling 1 CMOS Analog Design Using All-region MOSFET Modeling Chapter 3 CMOS technology, components, and layout techniques

CMOS Analog Design Using All-Region MOSFET Modeling 2 Simplified CMOS process flow p-type substrate STI (b) STI Nitride Photoresist p-type substrate (a) Oxide Photo- resist Poly STI p-type substrate STI p-well n-well (d) Photo- resist Poly p-type substrate p-welln-well (c) STI n + poly p + poly n+n+ n+n+ p+p+ p+p+ p-type substrate p-well n-well STI (e) Oxide spacer n + poly p + poly n+n+ n+n+ p+p+ p+p+ p-type substrate STI p- well n-well STI (f) Oxide spacer p + poly n+n+ n+n+ p+p+ p+p+ p-type substrate STI p-well n- well STI (g) n + poly

CMOS Analog Design Using All-Region MOSFET Modeling 3 CMOS structure Triple-well process p-substrate deep n-well n-well p-well n+n+ n+n+ p+p+ p+p+ Transistors in deep- submicron process

CMOS Analog Design Using All-Region MOSFET Modeling nm technology node nMOSpMOS Supply voltage V Thin oxide3 nm L gate 130 nm150 nm VTVT 0.3 V (130 nm)-0.24 V (150 nm) I Dsat (1.5V) 0.94 mA/  m0.42 mA/  m I off 3 nA/  m g msat 860 mS/mm430 mS/mm C j (0V) 0.65 fF/  m fF/  m 2 Silicide ( S, D and poly)  /sq Parameters of a six-metal-layer 180-nm CMOS technology node

CMOS Analog Design Using All-Region MOSFET Modeling 5 Integrated resistors h L W In the general case

CMOS Analog Design Using All-Region MOSFET Modeling 6 Resistivity of some metals Metal (bulk)Resistivity at 20 o CTCR Aluminum 2.8 ·  -cm 3800 ppm/ o C Copper 1.7 ·  -cm 4000 ppm/ o C Gold 2.4 ·  -cm 3700 ppm/ o C Sheet resistance of a copper layer of 1000 nm depth

CMOS Analog Design Using All-Region MOSFET Modeling 7 Polysilicon resistors CMOS Analog Design Using All-Region MOSFET Modeling 7

8 Summary of resistors in CMOS technology Resistor typeSheet resistance (  /sq) Temperature coefficient (ppm/ o C) Voltage coefficient (ppm/V) n + Polysilicon p + Polysilicon n + / p + Polysilicon (silicided) 5 n + Diffusion p + Diffusion n-Well

CMOS Analog Design Using All-Region MOSFET Modeling 9 The MOS transistor as a resistor Example: Verify that, in strong inversion, the equivalent resistance between source and drain of an MOS transistor at V DS =0 is given by V Q is the dc potential at the source.

CMOS Analog Design Using All-Region MOSFET Modeling 10 Metal-insulator-metal capacitors (a) Substrate C1C1 C2C2 C3C3 C parasitic C=C 1 +C 2 +C 3 Metal 1 Metal 2 Metal 3 Metal 4 Top view Cross section (b) ( a) vertical parallel plate structure, (b) lateral flux capacitor.

CMOS Analog Design Using All-Region MOSFET Modeling 11 Metal-oxide semiconductor capacitors (a) Poly-semiconductor (b) poly-poly capacitors VCC is typically around 100 ppm/V TCC is of the order of 20 ppm/ o C.

CMOS Analog Design Using All-Region MOSFET Modeling 12 MOSFET gate capacitors - 1 Gate capacitors in a p-well CMOS technology

CMOS Analog Design Using All-Region MOSFET Modeling 13 MOSFET gate capacitors - 2 experiment theory

CMOS Analog Design Using All-Region MOSFET Modeling 14 Intrinsic capacitances of the MOS transistor for V DS =0 MOSFET gate capacitors - 3 In accumulation In strong inversion

CMOS Analog Design Using All-Region MOSFET Modeling 15 In accumulation In inversion, a similar expression holds MOSFET gate capacitors - 4

CMOS Analog Design Using All-Region MOSFET Modeling 16 Summary of capacitors in CMOS CMOS Analog Design Using All-Region MOSFET Modeling 16 Capacitor typeCapacitance per unit area ( aF/  m 2 ) Temperature coefficient (ppm/  C) Voltage coefficient (ppm/V) MOM MOM (combined lateral and vertical structure) MOS gate (biased) MOS (heavily doped Si option) MIM (thin oxide option) Poly-poly

CMOS Analog Design Using All-Region MOSFET Modeling 17 Inductors Example: Inductance of a 5- turn spiral inductor with an average radius of 50  m. Planar spiral inductor

CMOS Analog Design Using All-Region MOSFET Modeling 18 Bipolar transistors (BJTs) in CMOS Flow of carriers in the CMOS-compatible bipolar junction transistor

CMOS Analog Design Using All-Region MOSFET Modeling 19 BJTs in triple-well CMOS

CMOS Analog Design Using All-Region MOSFET Modeling 20 Latchup Parasitic bipolar transistors in CMOS technology which may lead to latchup. (a) Cross section of the CMOS structure; (b) Equivalent circuit of the parasitic bipolar transistors and resistors

CMOS Analog Design Using All-Region MOSFET Modeling 21 Optical lithography - 1 Wafer Mask Photoresist Ultraviolet light

CMOS Analog Design Using All-Region MOSFET Modeling 22 SourceWavelength (nm) Intended resolution (nm) Year of introduction G-line * I-line * KrF laser ArF laser F 2 laser15765** *Filtered spectral components of high-pressure Hg or Hg-rare gas discharge lamps. ** The technology was abandoned. Optical lithography - 2 Wavelength used for optical lithography

CMOS Analog Design Using All-Region MOSFET Modeling 23 Optical lithography - 3 Optical proximity correction (OPC) counteracts lithography distortions

CMOS Analog Design Using All-Region MOSFET Modeling 24 MOSFET layout - 1 Mask layout and cross section of a CMOS inverter. N-well and P-well contacts not shown. Dashed lines represent metal connections

CMOS Analog Design Using All-Region MOSFET Modeling 25 Source/drain implant Shaded region Asymmetry MOSFET layout - 2 Diagonal shift in the source drain regions of a transistor due to a tilted implant

CMOS Analog Design Using All-Region MOSFET Modeling 26 NoNo Rule 1Same structure 2Same shape, same size 3Same orientation 4Same surroundings 5Minimum distance 6Common-centroid geometries 7Same temperature Rules for minimizing systematic mismatch of integrated devices MOSFET layout - 3

CMOS Analog Design Using All-Region MOSFET Modeling 27CMOS Analog Design Using All-Region MOSFET Modeling 27 Matching improvement by the addition of dummy devices for the layout of two resistors with a resistance ratio of 2/1: (a) unconnected dummy resistors (b) connected dummy resistors Unconnected dummy Conn. dummy MOSFET layout - 4

CMOS Analog Design Using All-Region MOSFET Modeling 28 (a) C ox C ox +  C ox C ox +2  C ox C ox +3  C ox A B A B A B B A (b) MOSFET layout - 5 Mock layouts of some possible common-centroid geometries for improved matching. Transistors with the same label are connected in parallel.

CMOS Analog Design Using All-Region MOSFET Modeling 29 A differential pair with a folded layout AB C DE AB C DE C DE AB MOSFET layout - 6

CMOS Analog Design Using All-Region MOSFET Modeling 30 AB C DE F G C D E A B F G B A G F C DE MOSFET layout - 7 A third device is added to the differential pair without degrading the symmetry of the layout

CMOS Analog Design Using All-Region MOSFET Modeling 31 Common-centroid layout of a differential pair. CMOS Analog Design Using All-Region MOSFET Modeling 31 A B D E C A C B E D C MOSFET layout - 8

CMOS Analog Design Using All-Region MOSFET Modeling 32 Current mirror with an attenuation factor of 16: (a) Schematic; (b) Mock layout. I in (b) I out I in (a) MOSFET layout - 9