ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

H.-G. Moser Max-Planck-Institut für Physik MPI Semiconductor Laboratory (Halbleiterlabor: HLL) Common project of the: Max-Planck-Institut fuer Physik (Werner.
H.-G. Moser Max-Planck-Institut fuer Physik 2 nd open meeting July 4, 2008 Report on PXD Session.
2nd Open Meeting of the SuperKEKB Collaboration, KEK, March 2009 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Sensor R&D and Prototyping - Status -
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
SOIPD Status e prospective for 2012 The SOImager2 is a monolithic pixel sensor produced by OKI in the 0.20 µm Fully Depleted- Silicon On Insulator (FD-SOI)
The DEPFET Active Pixel Sensor as Vertex Detector for the ILC
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
SuperKEKB 3nd open meeting, July Hans-Günther Moser MPI für Physik PXD Summary Other talks in software, SVD and DAQ sessions.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
MIT Lincoln Laboratory NU Status-1 JAB 11/20/2015 Advanced Photodiode Development 7 April, 2000 James A. Burns ll.mit.edu.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
1 FNAL Pixel R&D Status R. Lipton Brief overview due to 3 failed MS Powerpoint versions –3D electronics New technologies for vertical integration of electronics.
Update on Simulation and Sensor procurement for CLICPix prototypes Mathieu Benoit.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich 11th RD50 Workshop CERN Nov Thin planar pixel detectors for highest radiation levels.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Prague, Marcel Trimpl, Bonn University DEPFET-Readout Concept for TESLA based on Current Mode Signal Processing Markus Schumacher on behalf.
FEE 2006, Perugia, Marcel Trimpl, University of Bonn VIth Workshop on Front End Electronics Perugia, Mai 2006 M.Trimpl DEPFET – collaboration:
The Belle II DEPFET Pixel Detector
Characterization of irradiated MOS-C with X-rays using CV-measurements and gated diode techniques Q. Wei, L. Andricek, H-G. Moser, R. H. Richter, Max-Planck-Institute.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
The ultralight DEPFET Pixel Detector of the Belle II Experiment Florian Lütticke On behalf of the DEPFET Collaboration th.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Spanish Linear Collider Meeting, Valencia, December 2012 Ladislav Andricek, MPI für Physik, HLL 1 DEPFET APS for future collider applications -Status and.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Hybrid Boards for PXD6 5th International Workshop on DEPFET Detectors and Applications Sept Oct Christian Koffmane 1,2 1 Max-Planck-Institut.
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
6 th Belle PAC, KEK, February 26 and PXD - EVO, 5/March/2012 Ladislav Andricek, MPI für Physik, HLL 1
Jelena Ninković Testing PXD6 - summary and plans Jelena Ninkovic for the HLL team.
On-Module Interconnection and CNM Projects DEPFET Meeting, Bonn, February Ladislav Andricek, MPI für Physik, HLL  update on thinning  samples.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Radiation Hardness of DEPFET Pixel Sensors Andreas Ritter IMPRS - Young Scientist Workshop 2010, Ringberg 1.
PXD ASIC Review, July 2015 Ladislav Andricek, MPG Halbleiterlabor Belle II PXD ASIC Review, the 2 nd …….. 1.
SOI for Belle II PXD DEPFET Meeting, Bonn, February Ladislav Andricek, MPI für Physik, HLL  update on thinning  samples for thermal mock-ups 
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford Ringberg Workshop, 8 April 2008 Pixels with Internal Storage: ISIS by LCFI.
Radiation Effect on MOS-Structure
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
Testing PXD6 - testing plans
Pilot run – matrix measurements after first metal
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Thinning and Plans for SuperBelle
The DEPFET for the ILC Vertex Detector
The CSOI approach for integrated micro channels
The SOI Issue – Material for PXD9
Highlights of Atlas Upgrade Week, March 2011
DEPFET Active Pixel Sensors (for the ILC)
The Belle II Vertex Pixel Detector (PXD)
Thin Planar Sensors for Future High-Luminosity-LHC Upgrades
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
3D sensors: status and plans for the ACTIVE project
Presentation transcript:

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology steering chips Switcher II r/o chips Curo II tolerance against ion. radition beam test 55 Fe

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Principle Drain Source Gate  fully depleted sensitive volume  internal amplification  no interconnection strays  charge collection in "Off" state, readout on demand J. Kemmer & G. Lutz, 1987

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Principle  fully depleted sensitive volume  internal amplification  no interconnection strays  charge collection in "Off" state, readout on demand J. Kemmer & G. Lutz, 1987 g q (pA/e - ) measured value Simulation internal amplification effective channel length L (  m)

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Matrix operation Only selected rows dissipate power but Sensor still sensitive even with the DEPFET in OFF state T ROW ≈ 50ns Row wise read out and row wise CDS!

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Compact linear DEPFETs Double pixel cells: reduces the required read out speed by 2  doubles the number of read out channels smallest pixel cell 22.5 x 36 μm 2 limited by technology: smallest feature size ≈2μm Gates Common Sources Clears D1D2  double poly-silicon/double metal Technology

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Module Concept: "all-silicon module" Thinned sensor (50 µm) in active area Chips are thinned to 50 μm, connection via bump bonding Cavities in frame can save material Thick support frame (~300 µm) Material budget (1 st layer, incl. steering chips and frame) ≈ 0.11 %X 0

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Top Wafer Handle Wafer a) oxidation and back side implant of top wafer b) wafer bonding and grinding/polishing of top wafer c) process  passivation open backside passivation d) anisotropic deep etching opens "windows" in handle wafer Processing thin detectors 50 μm, 4 diodes, 10 mm 2 reverse current (pA) pA/cm 2 Al

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Irradiation Issues D1 D2 S G1 G2 Cl Double pixel DEPFETs like in the main matrix from the latest production (Gate dielectrics: more than 200 nm) Radiation Effects (ionizing radiation) 1. postive oxide charge and postively charged oxide traps have to be compensated by a more negative gate voltage: negative shift of the theshold voltage (~t ox 2 ) 2. increased density of interface traps: higher 1/f noise and reduced mobility (g m )

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Threshold voltage shift GSF – National Research Center for Environment and Health, Munich 60 Co (1.17 MeV and 1.33 MeV) No annealing during irradiation  ~ 3 days irradiation Dose rate: ≈ 20 krad(SiO 2 )/h -∆V th (V) ∆Not (10 11 cm -2 ) "OFF" "ON" Dose (krad)

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Transconductance and subtreshold slope s=85mV/dec s=155mV/dec V th =-0.2V V th =-4.5V Literature: After 1Mrad 200 nm (SiO 2 ): N it ≈ cm krad  N it ≈2·10 11 cm krad  N it ≈7·10 11 cm -2 No change in the transconductance g m

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Performance before irradiation 55 Fe Energy (eV) Counts/channel o non-irrad. double pixel DEPFET o L=7μm, W=25 μm o V thresh ≈-0.2V, V gate =-1V o I drain =41 μA o Drain current read out o time cont. shaping  =6 μs Noise ENC=2.3 e - (rms) at T>23 degC

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Performance after irradiation 55 Fe Energy (eV) Counts/channel o Irradiated double pixel DEPFET o L=7μm, W=25 μm o after 913 krad, 60 Co o V thresh ≈-4V, V gate =-5.3V o I drain =21 μA o Drain current read out o time cont. shaping  =6 μs Noise ENC=7.9 e - (rms) at T>23 degC

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Clear Gate after irradiation ( 60 Co) G1 G2 S D1 D2 Clear Gate Cl

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL What's next in 2006?? 1. New production PXD5 -: bigger matrices -: better g q -: further improvement of clearing 2. Transfer thinning technology to production line -: qualify industrial partner for wafer bonding and top wafer thinning (engineered SOI Wafer) -: 150mm wafer -: produce diodes and mechanical samples as far as possible on main processing line

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL New ILC DEPFET production  Main Device -: 512 x 512 pixels -: read out in both sides -: 24μm x 33μm pixel size -: array area: 17mm x 12.3mm -: chip area: ~ 21mm x 18mm  max. ILC width (outer layers) -: Array 2,2cm x 0,62cm  max. ILC length (layer 1) -: Array 0,5cm x 5cm + 128x128  "working horse" arrays + 128x64  design studies + single pixel, mini matrices, teststructures

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Thin test diodes, 150mm Wafer Top Wafer Handle Wafer a) oxidation and back side implant of top wafer b) wafer bonding and grinding/polishing of top wafer c) process  passivation open backside passivation d) anisotropic deep etching opens "windows" in handle wafer SOI Wafers ready! Material (Top and Handle): 150mm, FZ, 100 Ohm.cm Oxidation 230 nm Full sheet P-implant back side top wafer At TraciT, Grenoble: Wafer Bonding Annealing 1050 degC, 4h Grinding, CMP: 50 μm top wafer Edge treatment, polishing Top and Handle wafer Yield: No voids: 9 Wafer 1 void (<5mm): 7 Wafer More than one void: 4 Wafer  Continue processing at HLL (finished by end of 2005)

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL In Summary.... So far:  Double Metal/Double Poly Technology established  Present Pixel size: 22x36 μm 2 – can go to ~ 20x20 µm 2, limited only by manufacturing equipment  Compact Linear DEPFETs show the expected excellent noise performance  Technology for thin (≤ 50μm ) detectors established (total budget 0.11% X 0 per layer)  Radiation tolerance against ionizing radiation demonstrated up to 1Mrad Advantages DEPFET:  Charge generation and first amplification in a fully depleted pixel cell  good Signal/Noise  No charge transfer needed:  better rad. tolerance against hadronic irradiation  Wafer scale arrays (6") possible:  easier module construction, less material  Charge collection in "OFF"-state, only one row active during readout:  low power consumption, less material for cooling  Production technology completely under control of detector designers and physicists We are ready to go for the next round!

ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL Workshop A Vertex Detector for the ILC - Physics and Technologies - May 28, May 31,