Tom Wilson Department of Geology and Geography West Virginia University Morgantown, WV Integrated Microseismic and 3D Seismic Interpretations Tom Wilson, Department of Geology and Geography Proposal submitted through the Environmentally Friendly Drilling Systems Program East Center at WVU (Doug Patchen, Center Director)
General objectives of the project Tom Wilson, Department of Geology and Geography 1)Develop a 3D seismic interpretation of an active Marcellus shale gas development area; 2)Incorporate available geophysical logs and subsurface data into the geophysical characterization and subsurface interpretation; 3)Position microseismic events in the subsurface stratigraphic framework and 3D seismic interpretation; 4)Evaluate relationship between seismic scale fault networks, other seismic attributes and microseismic distribution; 5)Create a workflow you can use and modify for decision making on placement of future laterals.
Task 1.0 3D seismic analysis Tom Wilson, Department of Geology and Geography Subtask 1.1 Database creation. Bring data sets including 3D seismic and well log data together in a common interpretation and computational platform. Subtask 1.2 Calculate synthetic seismic response, integrate well log data into seismic and develop a velocity function. Subtask 1.3 Conduct basic interpretation of 3D seismic. Subtask 1.4 Convert 3D seismic to depth and accurately position laterals & microseismic events in the depth volume. Subtask 1.5 Develop/test various 3D seismic discontinuity detection workflows to enhance seismic features that may influence fracability Use microseismic response for validation/calibration.
Post-stack processing will be conducted in time and depth domains. Accurate depth conversion is necessary. Already exist? Tom Wilson, Department of Geology and Geography Use synthetic seismogram to tie well log data into seismic & develop velocity function. Microseismic velocity function may be used to improve seismic event tie for depth conversion. The Burley #1 well (a “nearby” deep well) provides some regional control on deeper velocity distribution.
Pre & post stack depth migrations are only as good as the velocity function Tom Wilson, Department of Geology and Geography The data collected over this WV site had obvious anomalies associated with an incorrect elevation correction velocity. In this case the elevation correction velocity was much to low. With the datum above the valleys, seismic events across valleys were associated with time-structural low in areas of subsurface structural high.
Basic workflow Tom Wilson, Department of Geology and Geography Post-stack processing workflows will be developed to meet the needs of this area and the unique properties of this reservoir interval. Discontinuities will be extracted in time and depth domain for comparison. Other attribute workflows will be developed and evaluated in the context of microseismic responses.
Task 1.0 3D seismic analysis (continued) Tom Wilson, Department of Geology and Geography Subtask 1.6 Conduct orientation analysis of extracted discontinuities Subtask 1.7 Develop composite fracture distribution and intensity drivers using seismic discontinuities and other seismic attributes Subtask 1.8 Develop model discrete fracture network Subtask 1.9 Compute porosity and permeability distributions in the DFN
Orientations of seismic discontinuities. How do they fit in the context of regional structure/tectonic history? Tom Wilson, Department of Geology and Geography Analysis of seismic discontinuity trends in Marshal Co., for example, reveals both expected and anomalous trends. What does the microseismic reveal? ~ J 1 trend anomalous trend Less pervasive J 2 trend Optimal Lateral Orientation ~ S Hmax trend FMI logged fractures in the Oriskany Ss. Aarre et al., 2012
DFN seal (multilayer) Composite fracture driver: derived from discontinuity and max curvature normal to S Hmax Tom Wilson, Department of Geology and Geography Fracture perm K i Upscaled driver
k j and cumulative k j through a portion of the seal Tom Wilson, Department of Geology and Geography k j perm Integrated k j perm Hmax Lateral
Task 2.0 Microseismic evaluation Tom Wilson, Department of Geology and Geography Subtask 2.1 Bring microseismic data into the database Subtask 2.2 Examine microseismic for presence of master fracture zones (what does the distribution of microseismic events tell us?) Subtask 2.3 Integrate microseismic into Task 1 efforts
Microseismic display and integration capabilities Petrel/Nemo Tom Wilson, Department of Geology and Geography magnitude Sonic s/ft Uncertainty ellipsoid and BB diagram time Sonic s/ft Main event Early event Late event
Fan et al., 2010 Evaluating shale production within the context of microseismic response Tom Wilson, Department of Geology and Geography Not stress directions but orientations of probable fractures in these areas. Toelle, 2012
Project schedule Tom Wilson, Department of Geology and Geography
Recent publications on related work Tom Wilson, Department of Geology and Geography Journal Papers Oudinot, A., Koperna, G., Philip, Z., Liu, N., Heath, J., Wells, A., Young, G., and Wilson, T., 2011, CO 2 injection performance in the Fruitland coal fairway, San Juan Basin: Results of a Field Pilot: Society of Petroleum Engineers, SPE , Wilson, T., Wells, A., Peters, D., Mioduchowski, A., Martinez, G., Koperna, G., Akwari, B., and Heath, J., 2012a, Fracture and 3D Seismic Interpretations of the Fruitland Coal, San Juan Basin: Implications for CO 2 Retention and Tracer Movement: International Journal of Coal Geology, 99, pp Wilson, T., Siriwardane, H., Zhu, L., Bajura, R., Winschel, R., Locke, J., Bennett, J., 2012b, Fracture model of the Upper Freeport coal: Marshall County West Virginia pilot ECBMR and CO 2 sequestration site: International Journal of Coal Geology 13p., Weber, M., Wilson, T., Akwari, B., Wells, A., and Koperna, G., Impact of geological complexity of the Fruitland Formation on combined CO2 enhanced recovery/sequestration at San Juan Basin pilot site. International Journal of Coal Geology, 104, pp See T. Wilson corresponding author. Wells, A., Diehl, J., Strazisar, B., Wilson, T., Stanko, D., in press, Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO2 pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO2 soil-gas flux and soil-gas hydrocarbons. International Journal of Greenhouse Gas Control, 28p. Procedings Wilson, T., Weber, M., Bennett, J., Wells, A., Siriwardane, H., Akwari, B., Koperna, G., Fracture Model, Ground Displacements and Tracer Observations: Fruitland Coals, San Juan Basin, New Mexico, CO 2 Pilot Test: Proceedings of the International Pittsburgh Coal Conference, 13p. Meeting presentation Wilson, T., Smith, V., Brown, A., Gao, D., Modeling discrete fracture networks in the Tensleep Sandstone: Teapot Dome, Wyoming: AAPG Search and Discovery Article #50658, 4p.
References cited Tom Wilson, Department of Geology and Geography Aare, V., Astratti, D, Dayni, T., Mahmoud, S., Clark, A., Stellas, M., Stringer, J., Toelle, B., Vejbaek, O., and White, G., 2012, Seismic detection of subtle faults and fractures: Oilfield Review, Rich, J. P., and Ammerman, M., 2010, Unconventional geophysics for unconventional plays; SPE 13179, SPE unconventional gas conference Pittsburgh, PA. Fan, L., Thompson, J., and Robinson, J., 2010, Understanding gas production mechanisms and effectiveness of well stimulation in the Haynesville Shale through reservoir simulation; CSUG/SPE , Canadian unconventional resources and international petroleum conference, Calgary, Canada. Toelle, B., 2012, Shale plays evaluation – finding production sweet spots: Schlumberger NeXT course, Houston, TX.