Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 15 Overview: Locating Genes on Chromosomes Genes – Are located on chromosomes.

Slides:



Advertisements
Similar presentations
Chromosomes and Inheritance
Advertisements

Lecture #6 Date ________
The Chromosomal Basis of Inheritance
THE CHROMOSOMAL BASIS OF INHERITANCE
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 15 The Chromosomal Basis of Inheritance.
Concept 15.2: Sex-linked genes exhibit unique patterns of inheritance
Chapter 15~ The Chromosomal Basis of Inheritance
NOTES: Ch 15 - Chromosomes, Sex Determination & Sex Linkage
 Chapter 15~ The Chromosomal Basis of Inheritance.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Introduction to Human Genetics
Introduction to Human Genetics
Chapter 24: Patterns of Chromosome Inheritance
Chapter 15: Chromosomal Basis of Inheritance AP Biology.
The Chromosomal Basis of Inheritance Chapter 15. The importance of chromosomes In 1902, the chromosomal theory of inheritance began to take form, stating:
Chapter 15. Chromosome Theory of Inheritance Chromosomes actually segregate (homologs) and assort (nonhomologous) in meiosis Compare with dihybrid cross.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 15: The Chromosomal Basis of Inheritance.
Chapter 15 notes The Chromosomal Basis of Inheritance.
Chapter 15~ The Chromosomal Basis of Inheritance ________.
Chapter 15 Chromosomal Basis of Inheritance
Chromosomal Basis of Inheritance Chapter 15. Slide 2 of 36 Mendel & Chromosomes  Today we know that Mendel’s “hereditary factors” are located on chromosomes.
Chapter 15 The Chromosomal Basis of Inheritance. Concept 15.2: Sex-linked genes exhibit unique patterns of inheritance In humans and some other animals,
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 15: The Chromosomal Basis of Inheritance
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Overview: Locating Genes Along Chromosomes Mendel’s “hereditary factors” were genes, though this wasn’t known at the time Today we can show that genes.
Chapter 15 The Chromosomal Basis of Inheritance. Fig The location of a particular gene can be seen by tagging isolated chromosomes with a fluorescent.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 15.1: Mendelian inheritance has its physical basis in the behavior of.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
The Chromosomal Basis of Inheritance Chapter 15 Biology – Campbell Reece.
Introduction to Human Genetics But what happens when meiosis goes wrong? What when wrong? Happens meiosis wrong? When wrong? What meiosis goes wrong? Boehm.
Chapter 15: The chromosomal basis of inheritance Chromosome Theory of inheritance Chromosome Theory of inheritance Genes have specific loci on chromosomes.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Chapter 13 Raven & Johnson Chapter 15 Campbell Chromosomes & Inheritance.
Exam Critical Concepts Genetics Chapters
The Chromosomal Basis of Inheritance Chapter 15. A. Overview  Mendel’s “hereditary factors” held the key to inheritance. What are they?  Genes located.
Chromosomal Inheritance Chapter 15. Chromosomal basis of Inheritance Hereditary factors are located on chromosomes at specific loci - genes. Located in.
Chapter 15 The Chromosomal Basis of Inheritance
Inheritance: Beyond Mendel
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
“Simple and Complex Patterns of Inheritance continued”
The Chromosomal Basis of Inheritance
13.3_Mutations SC.912.L.16.4 Explain how mutations in DNA sequence may or may not result in phenotypic change. Explain how mutations in gametes may result.
The Chromosomal Basis of Inheritance
Lecture #6 Date ________
Concept 15.3: Sex-linked genes exhibit unique patterns of inheritance
Chapter 15 Overview: Locating Genes Along Chromosomes.
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
Overview: Locating Genes on Chromosomes
Chapter 15: The Chromosomal Basis of Inheritance
THE CHROMOSOMAL BASIS OF INHERITANCE
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
Alterations of Chromosomes
The Chromosomal Basis of Inheritance
The Chromosomal Basis of Inheritance
Chapter 15: The Chromosomal Basis of Inheritance
Presentation transcript:

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 15 Overview: Locating Genes on Chromosomes Genes – Are located on chromosomes Figure 15.1

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The chromosome theory of inheritance states that – Mendelian genes have specific loci on chromosomes – Chromosomes undergo segregation and independent assortment

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Linked Genes Concept 15.2: Linked genes tend to be inherited together because they are located near each other on the same chromosome Each chromosome – Has hundreds or thousands of genes

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The farther apart genes are on a chromosome – The more likely they are to be separated during crossing over

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 15.3: Sex-linked genes exhibit unique patterns of inheritance

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Chromosomal Basis of Sex An organism’s sex – Is an inherited phenotypic character determined by the presence or absence of certain chromosomes

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings In humans and other mammals – There are two varieties of sex chromosomes, X and Y Figure 15.9a (a) The X-Y system 44 + XY 44 + XX Parents 22 + X 22 + Y 22 + X SpermOva 44 + XX 44 + XY Zygotes (offspring)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Inheritance of Sex-Linked Genes The sex chromosomes – Have genes for many characters unrelated to sex A gene located on either sex chromosome – Is called a sex-linked gene

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Sex-linked genes – Follow specific patterns of inheritance Figure 15.10a–c XAXAXAXA XaYXaY XaXa Y XAXaXAXa XAYXAY XAYXAY XAYaXAYa XAXA XAXA Ova Sperm XAXaXAXa XAYXAY Ova XAXA XaXa XAXAXAXA XAYXAY XaYXaY XaYAXaYA XAXA Y Sperm XAXaXAXa XaYXaY   Ova XaXa Y XAXaXAXa XAYXAY XaYXaYXaYaXaYa XAXA XaXa A father with the disorder will transmit the mutant allele to all daughters but to no sons. When the mother is a dominant homozygote, the daughters will have the normal phenotype but will be carriers of the mutation. If a carrier mates with a male of normal phenotype, there is a 50% chance that each daughter will be a carrier like her mother, and a 50% chance that each son will have the disorder. If a carrier mates with a male who has the disorder, there is a 50% chance that each child born to them will have the disorder, regardless of sex. Daughters who do not have the disorder will be carriers, where as males without the disorder will be completely free of the recessive allele. (a) (b) (c) Sperm

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Some recessive alleles found on the X chromosome in humans cause certain types of disorders – Color blindness – Duchenne muscular dystrophy – Hemophilia

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings X inactivation in Female Mammals In mammalian females – One of the two X chromosomes in each cell is randomly inactivated during embryonic development

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings If a female is heterozygous for a particular gene located on the X chromosome – She will be a mosaic for that character Two cell populations in adult cat: Active X Orange fur Inactive X Early embryo: X chromosomes Allele for black fur Cell division and X chromosome inactivation Active X Black fur Inactive X Figure 15.11

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 15.4: Alterations of chromosome number or structure cause some genetic disorders Large-scale chromosomal alterations – Often lead to spontaneous abortions or cause a variety of developmental disorders

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Abnormal Chromosome Number When nondisjunction occurs – Pairs of homologous chromosomes do not separate normally during meiosis – Gametes contain two copies or no copies of a particular chromosome Figure 15.12a, b Meiosis I Nondisjunction Meiosis II Nondisjunction Gametes n + 1 n  1 n – 1 n + 1n –1 n n Number of chromosomes Nondisjunction of homologous chromosomes in meiosis I Nondisjunction of sister chromatids in meiosis II (a) (b)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Aneuploidy – Results from the fertilization of gametes in which nondisjunction occurred – Is a condition in which offspring have an abnormal number of a particular chromosome

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings If a zygote is trisomic – It has three copies of a particular chromosome If a zygote is monosomic – It has only one copy of a particular chromosome

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Alterations of Chromosome Structure Breakage of a chromosome can lead to four types of changes in chromosome structure – Deletion – Duplication – Inversion – Translocation

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Alterations of chromosome structure Figure 15.14a–d A B CD E FG H Deletion A B C E G H F A B CD E FG H Duplication A B C B D E C F G H A A MN OPQR B CD EFGH B CDEFGH Inversion Reciprocal translocation A BPQ R M NOCDEF G H A D CBEFH G (a) A deletion removes a chromosomal segment. (b) A duplication repeats a segment. (c) An inversion reverses a segment within a chromosome. (d) A translocation moves a segment from one chromosome to another, nonhomologous one. In a reciprocal translocation, the most common type, nonhomologous chromosomes exchange fragments. Nonreciprocal translocations also occur, in which a chromosome transfers a fragment without receiving a fragment in return.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Human Disorders Due to Chromosomal Alterations Alterations of chromosome number and structure – Are associated with a number of serious human disorders

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Down Syndrome Down syndrome – Is usually the result of an extra chromosome 21, trisomy 21 Figure 15.15

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Aneuploidy of Sex Chromosomes Nondisjunction of sex chromosomes – Produces a variety of aneuploid conditions Aneuploidy – any abnormal number of a specific chromosome

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Klinefelter syndrome – Is the result of an extra chromosome in a male, producing XXY individuals Turner syndrome – Is the result of monosomy X, producing an X0 karyotype

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Disorders Caused by Structurally Altered Chromosomes Cri du chat – Is a disorder caused by a deletion in a chromosome

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Certain cancers – Are caused by translocations of chromosomes Figure Normal chromosome 9 Reciprocal translocation Translocated chromosome 9 Philadelphia chromosome Normal chromosome 22 Translocated chromosome 22