1 High Energy Electron Acceleration Using Plasmas, 6-10 June, Paris, 2005 Laser Electron Acceleration Project at JAERI Masaki Kando Advanced Photon Research.

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Physics of a 10 GeV laser-plasma accelerator stage Eric Esarey HBEB Workshop, Nov , C. Schroeder, C. Geddes, E. Cormier-Michel,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
C. McGuffey a, W. Schumaker a, S. Kneip b, F. Dollar a, A. Maksimchuk a, A. G. R. Thomas a, and K. Krushelnick a (a) University of Michigan, Center for.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
Historical Review on the Plasma Based Particle Accelerators Congratulation for opening “Plasma and Space Science Center” Yasushi Nishida Lunghwa University.
kHz-driven high-harmonic generation from overdense plasmas
Ultrafast XUV Coherent Diffractive Imaging Xunyou GE, CEA Saclay Director : Hamed Merdji.
16 Giugno 2009 ICUIL 2010 Conference Watkins Glen, New York, USA Presented by Luca Labate* on behalf of the PLASMONX commissioning team Istituto Nazionale.
High-charge energetic electron beam generated in the bubble regime Baifei Shen ( 沈百飞 ) State Key Laboratory of High Field Laser Physics, Shanghai Institute.
James Welch October 30, FEL Commissioning Plans J. Welch, et. al. FEL Commissioning Plans J. Welch, et. al. Accelerator.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
Ultra-High-Intensity Laser-Plasma Interactions: Comparing Experimental Results with Three- Dimensional,Fully-Relativistic, Numerical Simultations Donald.
Lecture 3: Laser Wake Field Acceleration (LWFA)
Introductio n The guiding of relativistic laser pulse in performed hollow plasma channels Xin Wang and Wei Yu Shanghai Institute of Optics and Fine Mechanics,
Measurement of Magnetic field in intense laser-matter interaction via Relativistic electron deflectometry Osaka University *N. Nakanii, H. Habara, K. A.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
Bremsstrahlung Temperature Scaling in Ultra-Intense Laser- Plasma Interactions C. Zulick, B. Hou, J. Nees, A. Maksimchuk, A. Thomas, K. Krushelnick Center.
Laser driven particle acceleration
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Eric Esarey W. Leemans, C. Geddes, C. Schroeder, S. Toth,
UCLA Frequency-domain interferometry diagnostic system for the detection of relativistic plasma waves Catalin V. Filip, Electrical Engineering Department,
Pre-formed channels for laser-plasma accelerators Euroleap kickoff meeting May, 2006, Orsay, France N. C. Lopes Grupo de Lasers e Plasmas Instituto Superior.
Particle-in-Cell Modeling of Rf Breakdown in Accelerating Structures and Waveguides Valery Dolgashev, SLAC National Accelerator Laboratory Breakdown physics.
1 Gas-Filled Capillary Discharge Waveguides Simon Hooker, Tony Gonsalves & Tom Rowlands-Rees Collaborations Alpha-X Basic Technology programme (Dino Jaroszynski.
FACET and beam-driven e-/e+ collider concepts Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009 LA-UR.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Winni Decking Impressions from the Dream Beams Symposium Max-Planck-Institut fuer Quantenoptik (MPQ)
All-optical accelerators
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Application of Plasma Waveguides to Advanced High Energy Accelerators H.M. Milchberg +* and T.M. Antonsen, Jr. #* * Institute for Physical Science and.
Stable and Tuneable Laser Plasma Accelerators
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
R. Kupfer, B. Barmashenko and I. Bar
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
MPQ Acknowledgments for Collaboration: G. Mourou, X. M. Zhang,Y. M. Shin, D. Farinella, T. Saeki, D. Farinella, N. Naumova, K. Nakajima, S. Bulanov, A.
Fast Electron Temperature Scaling and Conversion Efficiency Measurements using a Bremsstrahlung Spectrometer Brad Westover US-Japan Workshop San Diego,
SIMULATIONS FOR THE ELUCIDATION OF ELECTRON BEAM PROPERTIES IN LASER-WAKEFIELD ACCELERATION EXPERIMENTS VIA BETATRON AND SYNCHROTRON-LIKE RADIATION P.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
Design Considerations of table-top FELs laser-plasma accelerators principal possibility of table-top FELs possible VUV and X-ray scenarios new experimental.
Electron Spectrometer: Status July 14 Simon Jolly, Lawrence Deacon 1 st July 2014.
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
Summary WG5 R&D for Innovative Accelerators Greg LeBlanc.
Mirela Cerchez, ILPP, HHU, Düsseldorf Meeting GRK1203, Bad Breisig, 11th October 2007 Absorption of sub-10 fs laser pulses in overdense solid targets Mirela.
Laser wake field acceleration using nano-particles Laser wake field acceleration using nano-particles Department of Physics and Photon Science, Gwangju.
Supported by the U.K. EPSRC, the European Community Laserlab-Europe and ELI projects. Group Leader: Prof. Dino Jaroszynski Post-docs and lecturers: E.
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
Betatron radiation sources
of High-Energy, High-Density Electron and Positron Beams
V. Bagnoud PHELIX, Plasma Physics department GSI Darmstadt
The 2nd European Advanced Accelerator Concepts Workshop
SUPA, Department of Physics, University of Strathclyde,
8-10 June Institut Henri Poincaré, Paris, France
ULTRA-HIGH BRIGHTNESS ELECTRON BEAMS BY PLASMA BASED INJECTORS FOR ALL
Laboratoire d’Optique Appliquée
Wakefield Accelerator
Control of laser wakefield amplitude in capillary tubes
All-Optical Injection
Advanced Research Electron Accelerator Laboratory
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

1 High Energy Electron Acceleration Using Plasmas, 6-10 June, Paris, 2005 Laser Electron Acceleration Project at JAERI Masaki Kando Advanced Photon Research Center Japan Atomic Energy Research Institute (JAERI)

2 Collaborators A. Yamazaki 1,2), H. Kotaki 1), S. Kondo 1), T. Homma 1), S. Kanazawa 1), K. Nakajima 1,3), L.M. Chen 1), J. Ma 1), H. Kiriyama 1), Y. Akahane 1), M. Mori 1), Y. Hayashi 1), Y. Nakai 1), Y. Yamamoto 1), K. Tsuji 1), T. Shimomura 1), K. Yamakawa 1), J. Koga 1), T. Hosokai 4), A. Zhidkov 4), K. Kinoshita 4), M. Uesaka 4), S. V. Bulanov 1), T. Esirkepov 1), M. Yamagiwa 1), T. Kimura 1), T. Tajima 1) and International Experimental Taskforce (IET) members 1) APRC, JAERI 2) Kyoto University 3) High Energy Accelerator Research Organization (KEK) 4) The University of Tokyo

3 Table of Contents 1. Introduction 2. Theoretical work on Beam Quality 3. Our Approach to Good quality beams 1. High power laser :Bubble/Blow-out regime 2. Moderate power laser: Gas density control 4. Summary

4 Introduction JAERI Laser Electron Acceleration Project( ) Demonstration of 1GeV Acceleration Bubble/blow-out, Fast-Z pinch capillary waveguide,.. High quality beam production Application - keV X-ray source (compact) We plan to use wakefield as an undulator - Pump-probe experiment (Ultrafast science)

5 Route to quasi-monoenergetic electrons Bubble regime Blow-out regime Scaling laws Length matching L=Ldp (L=n Ldp n:integer is ok?) E. Miura et al., J. Plasma Fusion Res (2005) Experiments S. P. D. Mangles et al., Nature 431, 535 (2004) C. G. R. Geddes et al., Nature 431, 538 (2004) W. Lu et al., This Workshop High peak power is required Not so high peak power is required A. Yamazaki et al., submitted to PoP J. Faure et al., Nature 431 (2004) S. Gordienko & A. Pukhov, Phys. Plasmas 12, (2005)

6 Energy spectrum of accelerated electrons 1D Hamiltonian, Motion in 1st wake-period S.V. Bulanov et al., appeared in Phys. Plasma, soon

7 Energy spectrum of fast electrons

8

9 Transverse emittance

10 Transverse emittance

11 Transverse emittance

12 Near-Term Experiment at JAERI Peak power > 50 TW Pulse duration 23 fs Focal length775 mm / 450mm Spot radius,w 0 ~16 µ m / ~9 µ m Contrast10 -6 Peak intensity6.2x10 18 W/cm 2 a 0 =1.7 at 25TW 2.0x10 19 W/cm 2 a 0 =3.0 at 25TW Plasma density3x x10 20 cm -3 TargetHe-gas-jet length mm (slit length) Long-Focus experiment Goal: Quasi-mono energetic electrons ‘ Bubble /Blow-out regime ’ Test of non-uniform plasma density Betatron X-ray measurement

13 Near-Term Experiment - Diagnosis Electron –ChargeCurrent Transformer –Energy Compact spectrometer w/Scintillating screen –High energy detection: Sampling calorimeter –Pulse duration Bolometer (THz detection), Single-shot meas. by polychromator Plasma –Channeling Schlieren/shadowgraphy/ Interferometry X-ray –EnergyRoss filter and Photon counting on CCD –Angular distributionRail system & CCD and/or NaI magnet size 10cmx10cm

14 Experimental setup We are installing a new big target chamber OAP Test With He-Ne laser Almost perfect

15 2D PIC Simulations Although 2D simulation underestimates the maximum energy when self-focusing happens, qualitative estimation is valid. Ne=3x10 18 cm -3 Ne=1.7x10 19 cm -3 Uniform plasma a 0 =1.7 T=23 fs, sx=16 µ m

16 2D PIC Simulations Ne=1.7x x10 18 cm -3 Ne=1.7x10 19 cm -3 Sharp-density transition Parabolic- realistic distribution a 0 =1.7 T=23 fs, sx=16 µ m Narrow

17 Schedule Laser maintenance Target Chamber Experiment Oscillator replacement/ Regen realignment Power Amp. YAG replacement New big chamber installation Optics adjustment Spot, Pulse duration check Shots (Electron/Ion)

18 Sharp density transition enhances injection S. V. Bulanov et al., Phys.Rev.E 58, R5257 (1998) H. Suk et al., Phys. Rev. Lett 8, 1011 (2001) T. Hosokai et al., Phys. Rev. E 67, (2003) P. Tomassini et al., Phys. Rev. ST 6, (2003) 2.1x10 19 cm x10 19 cm -3 L=2 µ m P. Tomassini et al., Phys. Rev. ST 6, (2003) No energetic electrons in homogenous plasma a 0 =1.3  =17fs nene Quasi-monoenergetic structure is formed if the length is appropriate.

19 Artificial prepulse & High contrast Demonstration has been done Next step: controllability & stability Artificial prepulse Hydrodynamic code T. Hosokai et al., PRE 2003 U. Tokyo Artificial prepulse, ~ns High Contrast(better than ) Fast Pockels Cell Frequency doubling In the compressor chamber, we will install optics to produce prepulse Uncompressed Laser Main pulse ~ 40 fs

20 Control of gas-jet density Compression by shock-waves Controlling a curvature of the wall makes it possible L~100 µ m ~ spatial resolution Better measurement and Wall shape optimization are required

21 Preliminary test with density control Solution1 : Gas-Cell + Supersonic gas-jet Small aperture To avoid ‘ up-ramp ’ density profile Exit aperture Lavar type Wall shape In case of short-focal length, the up- ramp region destroys laser focusing M. Uesaka Lab. U. Tokyo This configuration will be tested Solution2 Use longer focal length

22 Summary Theoretical investigation of energy distribution is performed, and qualitatively reproduce experimental data. Parameter survey will be done around ‘Bubble / Blow-out regime/’ with JAERI 100 TW, 23 fs laser. –Laser and target chamber improvement is under way. Control of gas-distribution and prepulse are important for electron acceleration. –We are developing Gas-jet-nozzle in order to control particle injection and acceleration for relatively small lasers.