ROTATIONAL SPECTRUM AND LARGE AMPLITUDE MOTIONS OF 3,4-, 2,5- and 3,5- DIMETHYLBENZALDEHYDE I. KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques.

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

David Wilcox Purdue University Department of Chemistry 560 Oval Dr. West Lafayette, IN
+ TERAHERTZ SPECROSCOPY OF METHYLAMINE R. A. Motiyenko, L. Margulès Laboratoire PhLAM, Université Lille 1, France V.V. Ilyushin, E.A. Alekseev Insitute.
A fitting program for molecules with two equivalent methyl tops and C 2v point-group symmetry at equilibrium: Application to existing microwave, millimeter,
Microwave spectroscopy of biomimetics molecules Isabelle KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France Nice,
The microwave spectrum of partially deuterated species of dimethyl ether D. Lauvergnat, a L. Margulès, b R. A. Motyenko, b J.-C. Guillemin, c and L. H.
Hamiltonians for Floppy Molecules (as needed for FIR astronomy) A broad overview of state-of-the-art successes and failures for molecules with large amplitude.
Submillimeter-wave Spectroscopy of 13 C 1 -Methyl formate [H 13 COOCH 3 ] in the Ground State Atsuko Maeda, Ivan Medvedev, Eric Herbst, Frank C. De Lucia,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
STRUCTURE AND ROTATIONAL DYNAMICS OF ISOAMYL ACETATE AND METHYL PROPIONATE STUDIED BY MICROWAVE SPECTROSCOPY W.STAHL, H. V. L. NGUYEN, L. SUTIKDJA, D.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Outline 1. Introduction 2. User community and accuracy needs 3. Which large-amplitude motions 4. Which tools = which sym. operations 5. Example (in progress)
Vincent Sironneau, P. Chelin, F. Kwabia Tchana, I. Kleiner, J. Orphal, O. Pirali, J.-C. Guillemin, L. Margulès, R. Motiyenko, S. Cooke, W.J. Youngblood,
11 The THz spectrum of GlycolAldehyde M. Goubet, T.R. Huet, I. Haykal, L. Margulès PhLAM, CNRS – Université de Lille 1 O. Pirali, P. Roy AILES beamline,
Molecular Spectroscopy Symposium June 2009 The Submillimeter Spectrum of the Ground Torsional State of CH 2 DOH J.C. PEARSON, C.S. BRAUER, S.
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
Physique des Lasers, Atomes et Molécules
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
The Microwave Spectrum of the HCOOCD 2 H species of Methyl Formate L. H. Coudert, a T. R. Huet, b L. Margulès, b R. Motyenko, b and H. Møllendal c a LISA,
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Analysis of the microwave spectrum of the three-top molecule trimethoxylmethane L. Coudert, a G. Feng, b and W. Caminati b a Laboratoire Interuniversitaire.
The Microwave Spectrum of Monodeuterated Acetamide CH 2 DC(=O)NH 2 I. A. Konov, a L. H. Coudert, b C. Gutle, b T. R. Huet, c L. Margulès, c R. A. Motiyenko,
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
Reinvestigation of the ground and first torsional states of methylformate M. Carvajal, Universidad of Huelva (Spain) F. Willaert and J. Demaison, Université.
A. J. Merer Institute of Atomic and Molecular Sciences, Taipei, Taiwan Least squares fitting of perturbed vibrational polyads near the isomerization barrier.
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
Determining the Tunneling Path of the Ar-CHF 3 Complex L. Coudert, a W. Caminati, b A. Maris, b P. Ottaviani, b and A. C. Legon c a Laboratoire Interuniversitaire.
Torsion-Rotation Program for Six-Fold Barrier Molecules Toluene MW Fit Vadim V. Ilyushin 1, Zbigniew Kisiel 2, Lech Pszczolkowski 2, Heinrich Mäder 3,
Unusual Internal Rotation Coupling in the Microwave Spectrum of Pinacolone Yueyue Zhao 1, Ha Vinh Lam Nguyen 2, Wolfgang Stahl 1, Jon T. Hougen 3 1 Institute.
THEORETICAL INVESTIGATION OF LARGE AMPLITUDE MOTION IN THE METHYL PEROXY RADICAL Gabriel Just, Anne McCoy and Terry Miller The Ohio State University.
A NEW PROGRAM FOR NON- EQUIVALENT TWO-TOP INTERNAL ROTORS WITH A C s FRAME Isabelle KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
P. JANSEN, W. UBACHS, H. L. BETHLEM
Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. Ivan Smirnov a, Eugene Alekseev a, Vadim Ilyushin.
A New Hybrid Program For Fitting Rotationally Resolved Spectra Of methylamine-like Molecules: Application to 2-Methylmalonaldehyde Isabelle Kleiner a and.
 Small molecules forming the elementary blocks of biomolecules: amino acids, small peptides, nucleic acids, sugars… Can serve as validation tools relatively.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Structure of the SEVOFLURANE-BENZENE complex as determined by CP-FTMW spectroscopy Nathan A. Seifert, Daniel P. Zaleski, Justin L. Neill, Brooks H. Pate.
Analysis of the rotation-torsion spectrum of CH 2 DOH within the e 0, e 1, and o 1 torsional levels L. H. Coudert, a John C. Pearson, b Shanshan Yu, b.
The Microwave Spectrum of the Mono Deuterated Species of Methyl Formate HCOOCH 2 D L. H. Coudert, a L. Margulès, b G. Wlodarczak, b and J. Demaison b a.
What is internal rotation ? The methyl group can turn relatively to the rest of the molecule and this large amplitude motion is hindered by a three-fold.
ALDO J. APPONI, JAMES J. HOY and LUCY M. ZIURYS
NEW MICROWAVE SPECTRUM AND GLOBAL FIT OF METHYL ACETATE GROUND STATE
Isabelle Kleinera and Jon T. Hougenb
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES V. Ilyushin1, I. Armieieva1, O. Dorovskaya1,
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
THE TORSIONAL FUNDAMENTAL BAND AND ROTATIONAL SPECTRA UP TO 940 GHZ OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE V.V. Ilyushin1,
THE MILLIMETER-WAVE SPECTRUM OF VINYL ACETATE
Isabelle Kleinera and Jon T. Hougenb
Acetaldehyde: Into the Submillimeter
How methyl tops talk with each other
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
IAM(-LIKE) Tunneling Matrix Formalism for One- and Two-Methyl-Top Molecules Based on the Extended Permutation-Inversion Group Idea and Its Application.
A. Jabri, I. Kleiner, L. Margulès, R. Motyenko, J-C. Guillemin, E. A
Analysis of torsional splitting in the ν8 band of propane near 870
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
The torsional spectrum of doubly deuterated methanol CHD2OH
MOLECULES WITH A SIX-FOLD BARRIER: MICROWAVE SPECTRUM OF TOLUENE
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
Presentation transcript:

ROTATIONAL SPECTRUM AND LARGE AMPLITUDE MOTIONS OF 3,4-, 2,5- and 3,5- DIMETHYLBENZALDEHYDE I. KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS, Universités Paris Est et Paris Diderot, Créteil, France M. TUDORIE Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles M. JAHN, J-U. GRABOW Gottfried-Wilhelm-Leibniz-Universitat, Hannover, Germany M. GOUBET Laboratoire PhLAM, Université de Lille, France

Objectives: 1) Follows up a study on para-tolualdehyde: Information Transfer Through Conjugated bonds? V 6 vs. V 3 barrier to internal rotation Walther Caminati, Angela R. Hight-Walker, Jon T. Hougen, Isabelle Kleiner, Hilkka Saal, Jens-Uwe Grabow, to be published. Will the methyl group know about the asymmetry? H O C aldehyde group introduces asymmetry:

Toluène – 6-fold (V 6 = 4.84 cm -1 ) V. Ilyushin, Z. Kisiel, L. Pszczolkowski, H.Mader, J.T. Hougen, JMS 259 (2010) Para-tolualdehyde (pT) – (V 3 = 28 cm-1, V 6 = cm -1 ) W. Caminati, H. Saal, A.R. Hight Walker, Kleiner, J.T. Hougen, J.-U. Grabow, in préparation Meta-tolualdehyde (mT) – (V 3 = 36 cm -1 cis (V 3 = 5 cm -1 trans ) J. Shirar, D S. Wilcox, K M. Hotopp, G L. Storck, I Kleiner, B C. Dian, JCP 2010 pT Toluène Cis-mTTrans-mT

Objectives 1) This study follows up the para- tolualdehyde work by Grabow et al 2) The DMB are good tests of the two-top BELGI code, applied so far to methyl acetate (Tudorie et al JMS 2010) and methyl propionate (Mol. Phys. 2012)

V 3 = 503 cm -1 Cis 3,4-DMBATrans 3,4-DMBA Cis 2,5-DMBA 3,5 DMBA V 3 = cm -1 V 3 = cm -1 V 3 = cm -1 V 3 = 6.10 cm -1 V 3 = 514 cm -1 V 3 = 456 cm -1 V 3 = 487 cm -1 High- High Barriers Low-Low barriers High-Low Barriers

BELGI-2Tops: 2 internal inequivalent rotors applied to METHYL ACETATE Tudorie et al JMS 2010 JK a K c 3 sets of internal rotation splittings : (AA,EA). V 3 = 100 cm -1  1 = a few GHz (AA,AE). V 3 = 425 cm -1  2 = a few MHz (AA,EE). Interaction between the 2 tops  a = 1.64 D,  b = 0.06 D 0 0 ±1 ± 1 0 ± 1 1 ±1  1  2 Permutation-inversion group G 18 Without torsion Top 1 Top 2 Interaction

Global approach for two tops : Ohashi’s model N. Ohashi, J. T. Hougen, R. D. Suenram, F. J. Lovas, Y. Kawashima, M. Fujitake, and J. Pyka, JMS H tor = F 1 p F 2 p F 12 p 1 p 2 + (1/2) V 31 (1-cos3  1 ) + (1/2) V 32 (1-cos3  2 ) +V 12c (1-cos3  1 ) ( 1-cos3  2 ) +V 12s sin3  1 sin3  2 H rot = AJ z 2 + BJ x 2 + CJ y 2 + cent.distorsion H int = r 1 J x p 1 + r 2 J x p 2 + q 1 J z p 1 + q 2 J z p 2 +B 1 p 1 2 J x 2 + B 2 p 2 2 J x 2 +B 12 p 1 p 2 J x 2 + C 1 p 1 2 J y 2 + C 2 p 2 2 J y 2 + C 12 p 1 p 2 J y 2 +q 12p p 1 p 2 (p 1 +p 2 ) J z +q 12m p 1 p 2 (p 1 -p 2 ) J z +...

“coaxially oriented beam resonator arrangement“ (COBRA) FTMW-Spectrometer at Hannover Accuracy : 1 kHz GHz

Low-Low barriers High Barrier Low barrier High- High Barrier

Overview of the data and quality of the fit 3,5 DMB2,5 DMB3,4 cis3,4 trans Low-low barrierHigh-lowHigh-high  c N. lines rms N. lines rms N. lines rms N. lines rms kHzkHz kHzkHz A E E E E Total Mesurements performed in Hanover : 2 – 26.5 GHz, J  15, Ka  4 accuracy: 1 kHz

Results 3,5 DMB (cm -1 ): « quasi PAM » Low barrier top: Higher barrier top: V 32 = (12) V 31 = (20) F 2 = F 1 = Q 2 = (34) Q 1 = (47) R 2 = (16) R 1 = (33) C 2 = (28) x C 1 = (27) x B 2 = (14) x Top-Top interaction F 12 = (42) V 12C = (99) V 12S = 1.282(37) B 12 = (25) x10 -4 C 12 = (78) x R 12m = (18) x 10 -4

3,5 DMB- comparison with ab initio results

cis-2,5-DMBA trans-2,5-DMBA F 1 = cm -1 V 3,1 = cm -1 F 2 = cm -1 V 3,2 = cm -1 f 12 = cm -1 This conformer was not observed in the jet Observed

3,4 DMB 3,4 – DMBA ; B3LYP/cc-pVTZ conf.  E / kJ.mol -1 A e / MHzB e / MHzC e / MHz  a / D  b / D  c / D cis trans Cis 3-4 DMBATrans 3-4 DMBA F 1 = cm -1 V 3,1 = cm -1 F 2 = cm -1 V 3,2 = cm -1 f 12 = 2*F 12 = cm -1 F 1 = cm -1 V 3,1 = cm -1 F 2 = cm -1 V 3,2 = cm -1 f 12 = 2*F 12 = cm -1

Conclusions When the two barriers are low, the splittings are large and the fit converges rather quickly When the two barriers (or one of them) is high, splittings are small and some internal rotation parameters are not well determined Use of ab initio values as initial guesses are crucial.

To solve How to compare top-top interaction terms from ab initio calculations to the values of BELGI-2tops (V 12c (1-cos3  1 ) ( 1-cos3  2 ) +V 12s sin3  1 sin3  2 )? Some hints from the dimethylether study by Senent and Carvajal (2012).

Synchroton SOLEIL

eq. clockwise TS: staggered eq. (mirror) eq. (mirror) anti-clockwise TS: eclipsed  E /cm -1 2,5 DMBAC2 methyl group at eq. : 1) we first fix the 2 And we turn the C5 steering wheel …

 E /cm -1 ~ +10 cm -1 ~ -5 cm -1 C2 methyl eq. C2 methyl TS 2,5 DMBA 2) Then we fix the C2 at the staggered position (max of its one –dimensional potential) H H After 60° 

Thank you ! M. TUDORIE and I. KLEINER acknowledge the ANR for the financial support from the contract ANR-08-BLAN-0054 TopModel

Coaxial oriented Beam-Resonator Arrangement (COBRA) Fabry-Perot resonator resonator tuning FT FID Impulse polarization pulse: coherence between rotating molecular dipoles oscillating macroscopic dipole moment: electromagnetic field at frequencies of molecular transitions

The new code: BELGI-2tops a new two-C 3v -top program was written in 2009: 1. For low, medium or high barriers 2. With high accuracy (obs-calcs < 1 kHz) 3. With high computational speed Begin with Ohashi’s two-top program, but use: 1. Two-step diagonalization (Herbst, BELGI) 2. Banded matrix computational methods suggested in 2009 ?

Theoretical Model: the global approach for one top H RAM = H rot + H tor + H int + H c.d. RAM = Rho Axis Method (axis system) for a C s (plane) frame : get rid of J x p  Constants1 1-cos3  p2p2 JapJap 1-cos6  p4p4 Jap3Jap3 1V 3 /2F  V 6 /2k4k4 k3k3 J2J2 (B+C)/2*FvFv GvGv LvLv NvNv MvMv k 3J Ja2Ja2 A-(B+C)/2*k5k5 k2k2 k1k1 K2K2 K1K1 k 3K J b 2 - J c 2 (B-C)/2*c2c2 c1c1 c4c4 c 11 c3c3 c 12 JaJb+JbJaJaJb+JbJa D ab or E ab d ab  ab  ab d ab6  ab  ab Torsional operators and potential function V(  ) Rotational Operators Hougen, Kleiner, Godefroid JMS 1994  = angle of torsion,  = couples internal rotation and global rotation, ratio of the moment of inertia of the top and the moment of inertia of the whole molecule Kirtman et al 1962 Lees and Baker, 1968 Herbst et al 1986

Two-step diagonalization for the two-top problem H RAM = H tor + H rot + H c.d + H int 1) Diagonalization of the torsional part of the Hamiltonian : Eigenvalues = torsional energies 2) A low set of torsional Eigenvectors x rotational wavefunctions are then used to set up the matrix of the rest of the Hamiltonian: H rot = AJ a 2 + B R J b 2 +C R J c 2 + q 1 J a p 1 + q 2 J a p 2 + r 1 J b p 1 + r 2 J b p 2 H c.d usual centrifugal distorsion terms H int higher order torsional-rotational interactions terms : cos3    cos3  2, p 1, p  and global rotational operators like J a, J b, J c

Overview of Existing Two-Top Programs Name Authors What it does? Method programs for rotational spectroscopy (Z. Kisiel) _____________________________________________________________________ XIAM Hartwig up to 3 sym tops « IAM » Potential Function fit Maederup to one quad Often 1MHz Obs-Calcs nucleusAr-acetone, (CH 3 ) 2 SiF 2 _____________________________________________________________________ ERHAM Gronerone or two Effective v t states fit internal rotors Fourier series for Torsional of sym. C 3v or C 2v Tunneling Splittings J up to 120. High Barrier acetone, diMEether _____________________________________________________________________ SPFIT/ Pickettone or two internalPotential Function fit SPCATrotors, sym or asym.propane _____________________________________________________________________ OHASHI Ohashitwo C 3v internal rotorsPotential Function fit Hougen C s or C 2h Frame A and E species fit together 1 kHz accuracy, but very slow N-methylacetamide, biacetyl