: Unit 3 Lesson 1 Jeopardy: Remediation Activity 2.

Slides:



Advertisements
Similar presentations
SOLUTION EXAMPLE 1 A linear system with no solution Show that the linear system has no solution. 3x + 2y = 10 Equation 1 3x + 2y = 2 Equation 2 Graph the.
Advertisements

Determine whether each curve below is the graph of a function of x. Select all answers that are graphs of functions of x:
VOCABULARY QUIZ The following screens will contain fill-in- the-blank statements. Mentally fill in each blank before clicking for the answer. They will.
Topics: Linear Inequalities Systems of Linear Equations Inequalities.
Unit 1b Section 3-3 Solving Systems of Inequalities.
EXAMPLE 3 Write an equation for a function
EXAMPLE 4 Classify and write rules for functions SOLUTION The graph represents exponential growth (y = ab x where b > 1). The y- intercept is 10, so a.
Bell Work2/12/15 Solve the system by elimination..
Chapter 4 Section 1 Copyright © 2011 Pearson Education, Inc.
Systems of Linear Equations
Solving Systems of Linear Equations in Three Variables; Applications
Review of Exponential Functions Teacher: Mr. Steven A. Manges.
Do Now 1/12/12  In your notebook, answer the following question. During a football game, a bag of popcorn sells for $2.50 and a pretzel sells for $2.00.
Substitution. There are 3 different ways to solve linear equations: 1. Substitution 2. Elimination 3. Graphing We will focus on a new one each day. Today.
3.2 Solving Systems Algebraically
8-1 Exploring Exponent Models Objectives:  To identify exponential growth and decay.  To define the asymptote  To graph exponential functions  To find.
Section 7.1: Graph Exponential Growth Functions Chapter 7: Exponential and Logarithmic Functions.
Algebra-2 Section 3-2A Solving Systems of Linear Equations Algebraically Using Substitution.
Objective I will identify the number of solutions a linear system has using one of the three methods used for solving linear systems.
Choose a category. You will be given the answer. You must give the correct question. Click to begin. UNIT 3.
Exponential Functions y = a(b) x Exponential Growth This graph shows exponential growth since the graph is increasing as it goes from left to right.
Warm Up 12/5 1) Is (-2, 3) a solution? 3x + y = -3 3x + y = -3 2x – 4y = 6 2x – 4y = 6 2) Find the solution by graphing y = -4 + x x + y = 6 3) Solve:
Solving Systems Using Elimination
MFM 2P Minds On Add or Subtract the following equations in order to make “y” equal 0.
Copyright © 2015, 2008, 2011 Pearson Education, Inc. Section 3.2, Slide 1 Chapter 3 Systems of Linear Equations.
Solving by Substitution Method or Elimination (Addition) Method
Slide Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley A set of equations is called a system of equations. The solution.
Warm Up HW Check Jeopardy Exponents GraphsExponential Growth/Decay Compound Interest Random Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300.
WHAT IS A “SOLUTION”? Sect P.5 solving Equations.
Graphing Equations Chapter 3.1. Objectives Plot ordered pairs Determine whether an ordered pair of numbers is a solution to an equation in two variables.
Good Morning, We are moving on to chapter 3. If there is time today I will show you your test score you can not have them back as I still have several.
Solve by Graphing Solve: 3x + 4y = - 4 x + 2y = 2
MAT 150 Module 10 – Systems of Equations Lesson 1 – Systems of Linear Equations.
Holt Algebra Exponential Functions Evaluate exponential functions. Identify and graph exponential functions. Objectives Exponential function Vocabulary.
Graphing Exponential Growth and Decay. An exponential function has the form b is a positive number other than 1. If b is greater than 1 Is called an exponential.
Geometric Sequences, Exponential Equations, Exponential Growth and Decay.
Exponential Functions 4.3 **You might want graph paper**
Betty Bob has six more nickels than dimes. The total amount of money she has is $3.30. How many of each coins does she have? Warm Up.
EXAMPLE 4 Solve linear systems with many or no solutions Solve the linear system. a.x – 2y = 4 3x – 6y = 8 b.4x – 10y = 8 – 14x + 35y = – 28 SOLUTION a.
 Variable with coefficient of one Solve for variable, and substitute  Two equations with opposite coefficients for one variable Add the two equations.
Systems of Equations Substitution Elimination Inequalities Systems of Inequalities Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500.
Example 1 Solve Using Equal Powers Property Solve the equation. a. 4 9x = – 4 x x23x = b. Write original equation. SOLUTION a. 4 9x 5 42.
Graphing Quadratic Functions Solving by: Factoring
Solve by Graphing Solve: 3x + 4y = - 4 x + 2y = 2
Systems of Linear Equations
ALGEBRA 1 CHAPTER 7 LESSON 5 SOLVE SPECIAL TYPES OF LINEAR SYSTEMS.
Solving Equations with Variables on Both Sides
Solve a system of linear equation in two variables
5.1 Solve Systems of Equations by Graphing
Lesson 7.1 How do you solve systems of linear equations by graphing?
Solving Systems of equations
Systems of equations.
Do Now 1/18/12 In your notebook, explain how you know if two equations contain one solution, no solutions, or infinitely many solutions. Provide an example.
Analyzing Functions, Curve Fitting (9-9)
Standard Normal Probabilities
Objectives: 1. Identify systems of equations 2
Lesson Objectives: I will be able to …
Solving One and Two Step Equations
Solving Systems of Equations
Patterns MAFS.3.OA.4.9.
Objectives Identify solutions of linear equations in two variables.
Solving Systems of Equations by Elimination
SYSTEMS OF LINEAR EQUATIONS
Unit 6: Exponential Functions
Choosing a Model ALGEBRA 1 LESSON 8-5
Graphing Linear Equations
Solving Systems Using Elimination
The student will be able to:
Exponential Verses Linear
Solving Systems of equations
Presentation transcript:

: Unit 3 Lesson 1 Jeopardy: Remediation Activity 2

1.Choose a category by clicking one of the dollar amounts. 2.Read the “answer” and write your “question” on the worksheet. 3.Check your answer by clicking again on the screen. 4.Click on the button to go back to the category slide. 5.Choose another category. 6.Continue to play the game until all the squares on your worksheet have been completed. 7.Turn in your worksheet to your classroom teacher.

$2 $5 $20 $1 $2 $5 $10 $20 $1 $2 $5 $10 $20 $1 $2 $5 $10 $1 $2 $10 $20 Notes 1Notes 2Notes 3Notes 4Grab Bag $10 $1 $20 $5

True or False: The graph below represents an exponential function.

What is false? (This is a linear function because the graph is a line! The graphs of exponential functions are curves!)

True or False: The equations of exponential functions look like y = a(b) x.

What is true?

True or False: In the equation y = a(b) x, a is the base.

What is false? (a is the initial value & b is the base)

True or False: The graph below represents y = 5(1/2) x.

What is true?

Find f(3) for the function f(x) = 4 x.

What is 64? (4 3 = 64)

Fill in the blank: The graph below models __________________. (a linear function, exponential growth, or exponential decay)

What is exponential growth?

Fill in the blank: In tables of exponential functions, you ____________ to get from one row to the next. (add, subtract, or multiply)

What is multiply?

Fill in the blank: The table below represents _______________. (a linear function, exponential growth, or exponential decay)

What is exponential growth? (1/4) x 4 = 1 1 x 4 = 4 4 x 4 = 16

Fill in the blank: The table below represents _______________. (a linear function, exponential growth, or exponential decay)

What is exponential decay? 4 x (1/2) = 2 2 x (1/2) = 1 1 x (1/2) = 1/2

Fill in the blank: The table below represents _______________. (a linear function, exponential growth, or exponential decay)

What is a linear function? = = = 6

True of False: b is the base in the equation of an exponential function.

What is true?

True or False: If 0 < b < 1, b is called the growth factor.

What is false? (If 0 < b < 1, b is called the decay factor.)

Which function below displays exponential decay? Explain your answer. y = 2 x or y = (1/2) x

What is y = (1/2) x ? (b = ½ and 0 < ½ < 1, which means that the exponential function is decaying)

Which function below displays exponential growth? Explain your answer. y = 3(1/4) x or y = 6(5) x

What is y = 6(5) x ? (b = 5 and 5 > 1, which means that the exponential function is growing)

A colony of ants grows at a very fast rate. The ant population doubles every day. You decide to chart the ant population. When you begin, there are 50 ants. Write an equation to model this exponential function.

What is y = 50(2) x ? (a = 50 & b = 2)

Fill in the blanks: There are 2 ways to determine if a point is a solution to an exponential function: 1) We can look at the _______________ of the function. 2) We can ______________ (plug in) x and y in to the equation.

What is graph & substitute?

True of False: (3, 10) is a solution to y = 5 x

What is false? (You get a false statement when you substitute (3, 10) into the equation.)

Fill in the blank: Intersect means to _____________.

What is cross?

Where do the 2 functions below intersect? y = 6(3) x and y = 6(1/3) x

What is (0, 6)?

Where do the 2 functions below intersect? y = 8 x and y = (5/6) x

What is (0, 1)?

Which equation below represents an exponential function? A) y = mx + b B) y = ax 2 + bx + c C) y = ab x

What is C) y = ab x ?

True or False: The graph below represents exponential growth.

What is false? (This function does not increase from left to right.)

Is (-3, 4) a solution to the exponential function graphed below?

What is no? (The point is not on the graph.)

A radioactive bacteria decays by ½ every day. You start with 60 grams of bacteria. Write an equation to model this exponential function.

What is y = 60(1/2) x ? (a = 60 and b = 1/2)

Where do the 2 functions below intersect? y = 4(2) x and y = 4(2/3) x

What is (0, 4)?