1 太陽雑誌会 (Main) 2003.05.26 Takako T. Ishii ( 石井 ) Flare occurrence rate and modeling of soft X-ray light curves 1. Introduction 2. Model description 3.

Slides:



Advertisements
Similar presentations
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
Advertisements

RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Laura F. Morales Canadian Space Agency / Agence Spatiale Canadienne Paul Charbonneau Département de Physique, Université de Montréal Markus Aschwanden.
Probing Magnetic Reconnection with Active Region Transient Brightenings Martin Donachie Advisors: Adam Kobelski & Roger Scott.
Solar flare waiting time distribution (WTD) First steps Oscar Olmedo.
Energy Release and Particle Acceleration in Flares Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Solar flare hard X-ray spikes observed by RHESSI: a statistical study Jianxia Cheng Jiong Qiu, Mingde Ding, and Haimin Wang.
Flare Luminosity and the Relation to the Solar Wind and the Current Solar Minimum Conditions Roderick Gray Research Advisor: Dr. Kelly Korreck.
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Hard X-rays associated with CMEs H.S. Hudson, UCB & SPRC Y10, Jan. 24, 2001.
TOWARDS A REALISTIC, DATA-DRIVEN THERMODYNAMIC MHD MODEL OF THE GLOBAL SOLAR CORONA Cooper Downs, Ilia I. Roussev, Bart van der Holst, Noe Lugaz, Igor.
Ryan Payne Advisor: Dana Longcope. Solar Flares General  Solar flares are violent releases of matter and energy within active regions on the Sun.  Flares.
Uses of solar hard X-rays Basics of observations Hard X-rays at flare onset The event of April 18, 2001 Conclusions Yohkoh 10th Jan. 21, 2002Hugh Hudson,
D.B. Jess, 1 M. Mathioudakis, 1 D.S. Bloomfield, 1 V. Dhillon, 2 T. Marsh 3 1 Astrophysics and Planetary Science Division, Dept. of Physics and Astronomy,
Reconstructing Active Region Thermodynamics Loraine Lundquist Joint MURI Meeting Dec. 5, 2002.
Late-phase hard X-ray emission from flares The prototype event (right): March 30, 1969 (Frost & Dennis, 1971), a very bright over-the-limb event with a.
Solar-B Science Objectives - Overview of the Mission - Kazunari Shibata (Kyoto Univ.)
Merging of coronal and heliospheric numerical two-dimensional MHD models D. Odstrcil, et al., J. Geophys. Res., 107, 年 10 月 14 日 太陽雑誌会 ( 速報.
V.I. Abramenko, V.B. Yurchyshyn, H. Wang, T.R. Spirock, P.R. Goode Big Bear Solar Observatory, NJIT Crimean Astrophysical Observatory, Ukraine
ABSTRACT This work concerns with the analysis and modelling of possible magnetohydrodynamic response of plasma of the solar low atmosphere (upper chromosphere,
Spatially Resolved Spectral Analysis of Gradual Hardening Flare Takasaki H., Kiyohara J. (Kyoto Univ.), Asai A., Nakajima H. (NRO), Yokoyama T. (Univ.
Evolution of Flare Ribbons and Energy Release Rate Ayumi Asai 1,2, T. Yokoyama T. 3, M. Shimojo 2, S. Masuda 4, and K. Shibata 1 1:Kwasan and Hida Observatories,
Three Dimensional Visualization of the Solar Corona and study of coronal cavity observed by Yohkoh/SXT and Hinode/XRT J. Okumura, D. Mineyama, H. Watanabe,
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
Magnetic Reconnection in Flares Yokoyama, T. (NAOJ) Reconnection mini-workshop Kwasan obs. Main Title 1.Introduction : Reconnection Model of.
SLIDE SHOW 3 B changes due to transport + diffusion III -- * * magnetic Reynold number INDUCTION EQUATION B moves with plasma / diffuses through it.
Coronal Dynamics - Can we detect MHD shocks and waves by Solar B ? K. Shibata Kwasan Observatory Kyoto University 2003 Feb. 3-5 Solar B ISAS.
RHESSI Microflare Statistics Iain Hannah, S. Christe, H. Hudson, S. Krucker, L. Fletcher & M. A. Hendry.
Measurement of the Reconnection Rate in Solar Flares H. Isobe 2004/12/6 Taiyo-Zasshikai.
Why Solar Electron Beams Stop Producing Type III Radio Emission Hamish Reid, Eduard Kontar SUPA School of Physics and Astronomy University of Glasgow,
Pre-flare activity of M1.2 flare 김수진 1,2, 문용재 1, 김연한 1, 박영득 1, 김갑성 2 1. Korea Astronomy and Space Science Institute 2. Kyung Hee University.
Evolution of Flare Ribbons and Energy Release Rate Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, and Kazunari SHIBATA 1 1:Kwasan.
Katharine K. Reeves 1, Terry G. Forbes 2, Jon Linker 3 & Zoran Mikić 3 1 Harvard-Smithsonian Center for Astrophysics 2 University of New Hampshire 3 Science.
Emission measure distribution in loops impulsively heated at the footpoints Paola Testa, Giovanni Peres, Fabio Reale Universita’ di Palermo Solar Coronal.
Determining the Heating Rate in Reconnection Formed Flare Loops Wenjuan Liu 1, Jiong Qiu 1, Dana W. Longcope 1, Amir Caspi 2, Courtney Peck 2, Jennifer.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Flare-Associated Oscillations Observed with NoRH Ayumi Asai (NSRO) Nobeyama Symposium 2004 : 2004/10/26.
Flare Ribbon Expansion and Energy Release Ayumi ASAI Kwasan and Hida Observatories, Kyoto University Explosive Phenomena in Magnetized Plasma – New Development.
Masaki Yamaguchi, F. Takahara Theoretical Astrophysics Group Osaka University, Japan Workshop on “Variable Galactic Gamma-ray Source” Heidelberg December.
太陽雑誌会 2004/2/2 殿岡 TETHER-CUTTING ENERGETICS OF A SOLAR QUIET-REGION PROMINENCE ERUPTION Alphonse C. Sterling1, 2 and Ronald L. Moore NASA Marshall Space.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
Shine 2004, A. Sterling CME Eruption Onset Observations: Dimmings Alphonse C. Sterling NASA/MSFC/NSSTC.
2 nd Solaire Network Meeting Catania, January 2009 Investigating the characteristics of coronal loop heating by 1D hydrodynamic simulations R.
On the frequency distribution of heating events in Coronal Loops, simulating observations with Hinode/XRT Patrick Antolin 1, Kazunari Shibata 1, Takahiro.
Evolution of Flare Ribbons and Energy Release Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, Hiroki KUROKAWA 1, and Kazunari SHIBATA.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Particle acceleration by direct electric field in an active region modelled by a CA model CA modelAcceleration modelParticle distributionConclusionsIntroductionX-ray.
N. Giglietto (INFN Bari) and
A Physicist’s View of SOC Models
Hossein Safari & Michael S. Weatland
Evolution of Flare Ribbons and Energy Release Ayumi Asai1,
Solar Flare Energy Partition into Energetic Particle Acceleration
Evolution of Flare Ribbons and Energy Release
Evolution of Flare Ribbons and Energy Release Ayumi Asai (浅井 歩)1,
RHESSI Spectral Analysis of the 1N/M1.9 flare of 20 October 2003
Evolution of Flare Ribbons and Energy Release
TRACE Downflows and Energy Release
Downflows and Plasmoid Ejections as a Reconnection Outflow
Teriaca, et al (2003) ApJ, 588, SOHO/CDS HIDA/DST 2002 campaign
Quantifying Reconnection*
Preflare State Rust et al. (1994) 太陽雑誌会.
Flare-Associated Oscillations Observed with NoRH
On coronal streamer changes
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
-Short Talk- The soft X-ray characteristics of solar flares, both with and without associated CMEs Kay H.R.M., Harra L.K., Matthews S.A., Culhane J.L.,
Downflow as a Reconnection Outflow
A STUDY OF THE KINEMATIC EVOLUTION OF CORONAL MASS EJECTIONS J
Periodic Acceleration of Electrons in Solar Flares
Presentation transcript:

1 太陽雑誌会 (Main) Takako T. Ishii ( 石井 ) Flare occurrence rate and modeling of soft X-ray light curves 1. Introduction 2. Model description 3. Results 4. Summary and future works

2 Introduction Flare occurrence rate ・ Flare occurrence rate, power-law slope α ・ α > 2 → small scale flare dominate α < 2 → large scale flare dominate

3 Flare occurrence rate (Observation) ・ Count-up flares from observational data αWavelength Reference 1.5 – 1.7Yohkoh SXTShimizu 1995, SMM Hard-X Porter et al Radio*Mercier & Trottet GOES Soft-X*Feldman et al – 2.6 SoHO EIT (QR)Krucker & Benz ± 0.4Yohkoh SXT* Shimojo & Shibata – 2.6TRACE EUVParnell & Jupp TRACE EUVAschwanden et al – 7BATSE Hard-XLin et al ±0.1SoHO SUMERWinebarger et al ±0.09GOES Soft-X*Veronig et al * peak flux

4 Flare occurrence rate (Observation) Peak flux Aschwanden et al ApJ, 497, 972 Table 1

5 Flare occurrence rate (Observation) Aschwanden et al ApJ, 535, 1047 Fig. 10 Flare Energy erg erg Flare frequency α 1.5 α 2.5 α 1.8 α 1.7

6 Flare occurrence rate (Observation) ・ Note: Filter response function (Temperature bias) Aschwanden & Charbonneau 2002 ApJL α biased 1.8 → non-biased 1.4 ex. Loop-length distribution Original data Observation T [1.1 – 1.6 MK]

7 Flare occurrence rate (Model) ・ Avalanche model (Cellular-Automaton model) Lu & Hamilton 1991 Coronal magnetic field : self-organized critical state → Power-law dependence of flare occurrence rate Analogous to avalanches of sand → Same physical process (reconnection) The size of a given flare is determined by the number of elementary reconnection events. Simulated results: power-law slope Energy : 1.4, Peak flux : 1.8 Duration: 1.8 (Lu et al. 1993)

8 Avalanche model Avalanche ! Critical state = Power-law distribution Cell Cellular automaton model Self-organized criticality

9 Flare occurrence rate (Model) Aschwanden et al Logistic avalanche model Frequency distribution of elementary time structures during individual flares. Longcope & Noonan 2000 Minimum current corona model : slow buildup and sudden release cf. Lu & Hamiltion : magnetic relaxation no MHD equations Power-law index: Energy: 1.34, Peak: 1.48, Duration: 1.53

10 Flare occurrence rate (Model) Kashyap et al ApJ, 580, 1118 ・ Stellar flare α : 2.6, 2.7, 2.0 ( for 3 stars) ・ Flare occurrence: Assume power-law distribution total flux = flare + background Flare : Poisson process ・ Compare the modeled light curve with the observed light curve ( + detector characteristics) parameter : power-law index α cf. observed light curve → construct dN/dE

11 Flare occurrence rate (Model) ・ Flare occurrence: Poisson process Frontera & Fuligni 1979 Hard X-ray flare observation (balloon flight) Power spectral density distribution shot-noise process → spikes (bursts) in hard X-ray Wheatland et al. 1998, Wheatland 2000 Waiting time (time between flares) distribution Hard X-ray bursts GOES flares ( 25 years) Time-dependent Poisson process

12 Flare decay time scale ・ Flare duration: Impulsive< 60 min. ? LDE (long duration event) several hours ? ・ Modeling of light curves: Decay time scale: τ Bi-modal ? (impulsive & LDE) Power-law distribution ?

13 2. Model description ・ Flare occurrence rate, power-law slope α(Peak flux) α = 2.3 ← One-year observation (2002) Construct ‘mock-flare data base’ (200,000 flares) ・ Flare decay time scale τ single τ, mixed τ etc. ( e.g. 10 min., 60 min.) ・ Monte Calro simulation (time, flux) Number of flares / time step : Poisson (p_intensity = 1) Time step : 5 min. Flux : exponential decay + flare peak flux

14 Flare occurrence rate

15 Example light curve of a flare

16 Characteristics of light curves ・ Probability density distribution function of flux Time Flux Probability

17 Observational light curve

18 Flux distribution function

19 3. Result Model light curve

20 Flux distribution function (Single τ)

21 Flux distribution function (Mixed τ)

22 Flux distribution function (Mixed τ& Single τ)

23 Model light curves (with constant base flux)

24 Flux distribution function (with base-flux)

25 Model light curves (with modulated p_intensity)

26 Flux distribution function (with modulated p_int)

27 4. Summary and future works ・ Flare : Poisson with modulated p_intensity Decay time scale τ: 10min. : 30min. = 1:1 (or 20min) ×Base-flux model Flux ←small scale flares ・ Extension : A-class flares α dependence