Forecasting Professor Ahmadi.

Slides:



Advertisements
Similar presentations
Forecasting OPS 370.
Advertisements

Operations Management Forecasting Chapter 4
Forecasting 5 June Introduction What: Forecasting Techniques Where: Determine Trends Why: Make better decisions.
Forecasting Ross L. Fink.
Forecasting.
Forecasting To accompany Quantitative Analysis for Management, 8e
CHAPTER 3 Forecasting.
Chapter 3 Forecasting McGraw-Hill/Irwin
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 5-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ PERTEMUAN 14.
Chapter 13 Forecasting.
Operations Management Forecasting Chapter 4
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J Operations Management Forecasting Chapter 4.
4 Forecasting PowerPoint presentation to accompany Heizer and Render
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Forecasting Operations Chapter 12 Roberta Russell & Bernard.
Forecasting McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
15-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Forecasting Chapter 15.
Chapter 11 Solved Problems 1. Exhibit 11.2 Example Linear and Nonlinear Trend Patterns 2.
Slides 13b: Time-Series Models; Measuring Forecast Error
LSS Black Belt Training Forecasting. Forecasting Models Forecasting Techniques Qualitative Models Delphi Method Jury of Executive Opinion Sales Force.
Operations and Supply Chain Management
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 4 Forecasting Mike Dohan BUSI Forecasting What is forecasting? Why is it important? In what areas can forecasting be applied?
The Importance of Forecasting in POM
IES 371 Engineering Management Chapter 13: Forecasting
Production Planning and Control. 1. Naive approach 2. Moving averages 3. Exponential smoothing 4. Trend projection 5. Linear regression Time-Series Models.
CHAPTER 3 FORECASTING.
© 2006 Prentice Hall, Inc.4 – 1 Forcasting © 2006 Prentice Hall, Inc. Heizer/Render Principles of Operations Management, 6e Operations Management, 8e.
Operations Management
Chapter 3 Forecasting.
Forecasting OPS 370.
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna Forecasting.
Introduction to Management Science
© 2004 Prentice-Hall, Inc. Chapter 7 Demand Forecasting in a Supply Chain Supply Chain Management (2nd Edition) 7-1.
DSc 3120 Generalized Modeling Techniques with Applications Part II. Forecasting.
Time-Series Forecasting Learning Objectives 1.Describe What Forecasting Is 2. Forecasting Methods 3.Explain Time Series & Components 4.Smooth a Data.
1 DSCI 3023 Forecasting Plays an important role in many industries –marketing –financial planning –production control Forecasts are not to be thought of.
MBA.782.ForecastingCAJ Demand Management Qualitative Methods of Forecasting Quantitative Methods of Forecasting Causal Relationship Forecasting Focus.
Operations Research II Course,, September Part 6: Forecasting Operations Research II Dr. Aref Rashad.
Forecasting February 26, Laws of Forecasting Three Laws of Forecasting –Forecasts are always wrong! –Detailed forecasts are worse than aggregate.
1 1 Slide Forecasting Professor Ahmadi. 2 2 Slide Learning Objectives n Understand when to use various types of forecasting models and the time horizon.
Forecasting. 預測 (Forecasting) A Basis of Forecasting In business, forecasts are the basis for budgeting and planning for capacity, sales, production and.
Maintenance Workload Forecasting
15-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Forecasting Chapter 15.
Copyright ©2016 Cengage Learning. All Rights Reserved
McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Business Processes Sales Order Management Aggregate Planning Master Scheduling Production Activity Control Quality Control Distribution Mngt. © 2001 Victor.
Welcome to MM305 Unit 5 Seminar Prof Greg Forecasting.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 3 Forecasting.
Time Series Analysis and Forecasting. Introduction to Time Series Analysis A time-series is a set of observations on a quantitative variable collected.
15-1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Forecasting Chapter 15.
FORECASTING Kusdhianto Setiawan Gadjah Mada University.
Forecasting Demand. Forecasting Methods Qualitative – Judgmental, Executive Opinion - Internal Opinions - Delphi Method - Surveys Quantitative - Causal,
MGS3100_03.ppt/Feb 11, 2016/Page 1 Georgia State University - Confidential MGS 3100 Business Analysis Time Series Forecasting Feb 11, 2016.
DEPARTMENT OF MECHANICAL ENGINEERING VII-SEMESTER PRODUCTION TECHNOLOGY-II 1 CHAPTER NO.4 FORECASTING.
PRODUCTION & OPERATIONS MANAGEMENT Module II Forecasting for operations Prof. A.Das, MIMTS.
4 - 1 Course Title: Production and Operations Management Course Code: MGT 362 Course Book: Operations Management 10 th Edition. By Jay Heizer & Barry Render.
Forecasting is the art and science of predicting future events.
CHAPTER 12 FORECASTING. THE CONCEPTS A prediction of future events used for planning purpose Supply chain success, resources planning, scheduling, capacity.
3-1Forecasting CHAPTER 3 Forecasting McGraw-Hill/Irwin Operations Management, Eighth Edition, by William J. Stevenson Copyright © 2005 by The McGraw-Hill.
Forecasting Demand. Problems with Forecasts Forecasts are Usually Wrong. Every Forecast Should Include an Estimate of Error. Forecasts are More Accurate.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Chapter 8 Forecasting To Accompany.
Assignable variation Deviations with a specific cause or source. forecast bias or assignable variation or MSE? Click here for Hint.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 3 Forecasting.
Forecasting Quantitative Methods. READ FIRST Outline Define Forecasting The Three Time Frames of Forecasting Forms of Forecast Movement Forecasting Approaches.
Welcome to MM305 Unit 5 Seminar Dr. Bob Forecasting.
Welcome to MM305 Unit 5 Seminar Forecasting. What is forecasting? An attempt to predict the future using data. Generally an 8-step process 1.Why are you.
FORCASTING AND DEMAND PLANNING
Module 2: Demand Forecasting 2.
Welcome to MM305 Business Statistics with Quantitative Analysis
Prepared by Lee Revere and John Large
Presentation transcript:

Forecasting Professor Ahmadi

Learning Objectives Understand when to use various types of forecasting models and the time horizon. Understand qualitative and quantitative tools of forecasting. Compute moving averages and exponential smoothing models. Analyze trends and seasonality in time-series data. Compute variety of forecasting error measures. Use variables in linear regression model. Use Excel to analyze variety of forecasting models

Eight Steps to Forecasting 1. Determine use of forecast - what objective are we trying to obtain? 2. Select items or quantities to be forecasted. Determine time horizon of forecast: Short-range (less than three months) Medium-range (3 months to 3 years) Long-range (3+ years) 4. Select forecasting model or models. 5. Gather data needed to make forecast. 6. Validate forecasting model. 7. Make forecast. 8. Implement results.

Types of Forecasts

Qualitative Models Qualitative models attempt to incorporate judgmental or subjective factors into forecasting model. Opinions by experts, individual experiences and judgments, and other subjective factors may be considered. Qualitative models are especially useful when subjective factors are expected to be very important or when accurate quantitative data are difficult to obtain. Qualitative models are also useful for long-term forecasting.

Measuring Forecast Error Mean Absolute Deviation (MAD): MAD =  |forecast error| / T =  |At - Ft| / T Mean Squared Error (MSE): MSE =  (forecast error)2 / T =  (At – Ft)2 / T Mean Absolute Percent Error (MAPE): MAPE = 100  (|At - Ft|/ At) / T

Time - Series and Causal (Associative) Models Time-series Models: Time-series models attempt to predict future by using historical data. Models make assumption that what happens in future is a function of what has happened in past. 2. Causal Models: As with time-series models, causal models also rely on quantitative data. Bivariate and multivariate regression models are examples of associative models.

Moving Average MA is a series of arithmetic means Used if little or no trend Used often for smoothing Provides overall impression of data over time Equation: MA = (Actual value in previous k periods) / k

Weighted Moving Averages Used when trend is present Older data usually less important Weights based on intuition Equation: k-period weighted moving average =  (weight for period i) (actual value in period i)  (weights)

Exponential Smoothing A form of weighted moving average Weights decline exponentially Most recent data weighted most Requires smoothing constant () a ranges from 0 to 1 a is subjectively chosen Equation: Ft= Ft-1 + a ( At-1 - Ft-1 )

Time series Components The four Components of Time Series are: 1. Trend 2. Seasonal 3. Cyclical 4. Random The time series can be decomposed into its four components.

General Forms of Time-series Models There are two general forms of time-series models: Most widely used is multiplicative model, which assumes forecasted value is product of four components.  Forecast = (Trend) . (Seasonality) . (Cycles) .( Random)   Additive model adds components together to provide an estimate is also available. It is stated as: Forecast = Trend + Seasonality + Cycles + Random

Causal Models Goal of causal forecasting model is to develop best statistical relationship between dependent variable and independent variables. Most common model used in practice is regression analysis. In causal forecasting models, when one tries to predict dependent variable using single independent variable it is called a simple regression model. When one uses more than one independent variable to forecast dependent variable, it is called a multiple regression model.