Chapter 38 Photons, Electrons, and Atoms (About quantization of light, energy and the early foundation of quantum mechanics)

Slides:



Advertisements
Similar presentations
An Introduction to Quantum
Advertisements

Chapter 28 Quantum Physics (About quantization of light, energy and the early foundation of quantum mechanics)
1 My Chapter 27 Lecture. 2 Chapter 27: Early Quantum Physics and the Photon Blackbody Radiation The Photoelectric Effect Compton Scattering Early Models.
Quantum Physics ISAT 241 Analytical Methods III Fall 2003 David J. Lawrence.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 27: Early Quantum Physics and.
光 電 效 應 實 驗光 電 效 應 實 驗. The Interaction of Radiation with Matter( 電磁輻射與物質之間作用 ) The Photoelectric Effect ( 光電效應 ) The Compton Effect ( 康卜吞效應 ) The Pair.
Early Quantum Theory and Models of the Atom
Chapter 27: Early Quantum Physics and the Photon
Physics 2 Chapter 27 Sections 1-3.
The Development of a New Atomic Model.
Blackbody Radiation & Planck’s Hypothesis
Black body radiation BBR is the radiation emitted by a non-reflecting solid body. A perfect black body is one which absorbs all the radiations falling.
Wave-Particle Duality 1: The Beginnings of Quantum Mechanics.
Chapter 27 Quantum Theory
Blackbody Radiation Photoelectric Effect Wave-Particle Duality sections 30-1 – 30-4 Physics 1161: Lecture 28.
1 Chapter 38 Light Waves Behaving as Particles February 25, 27 Photoelectric effect 38.1 Light absorbed as photons: The photoelectric effect Photoelectric.
2. The Particle-like Properties Of Electromagnetic Radiation
Blackbody Radiation & Planck’s Hypothesis
Phys 102 – Lecture 25 The quantum mechanical model of light.
Physics at the end of XIX Century Major Discoveries of XX Century
Introduction to Quantum Physics
Classical vs Quantum Mechanics Rutherford’s model of the atom: electrons orbiting around a dense, massive positive nucleus Expected to be able to use classical.
Black Body radiation Hot filament glows.
L 33 Modern Physics [1] Introduction- quantum physics Particles of light  PHOTONS The photoelectric effect –Photocells & intrusion detection devices The.
29:006 FINAL EXAM FRIDAY MAY 11 3:00 – 5:00 PM IN LR1 VAN.
Modern Physics.
Particle Nature of Light
Quantum Physics Study Questions PHYS 252 Dr. Varriano.
the photoelectric effect. line spectra emitted by hydrogen gas
Young/Freeman University Physics 11e. Ch 38 Photons, Electrons, and Atoms © 2005 Pearson Education.
PHYS:1200 FINAL EXAM 1 FINAL EXAM: Wednesday December 17, 12:30 P - 2:30 P in LR-1 VAN FE covers Lectures 23 – 36 The study guide, formulas, and practice.
L 33 Modern Physics [1] Introduction- quantum physics Particles of light  PHOTONS The photoelectric effect –Photocells & intrusion detection devices The.
As an object gets hot, it gives Off energy in the form of Electromagnetic radiation.
Quantum Physics. Quantum Theory Max Planck, examining heat radiation (ir light) proposes energy is quantized, or occurring in discrete small packets with.
Blackbody Radiation: The light from a blackbody is light that comes solely from the object itself rather than being reflected from some other source. A.
Physics 1C Lecture 28A. Blackbody Radiation Any object emits EM radiation (thermal radiation). A blackbody is any body that is a perfect absorber or emitter.
The Wave – Particle Duality OR. Light Waves Until about 1900, the classical wave theory of light described most observed phenomenon. Light waves: Characterized.
Chapter 27- Atomic/Quantum Physics
Quantum Physics Chapter 27!.
Quantum Theory & the History of Light
The wave theory of light was unable to explain something known as the “photoelectric effect”
Rutherford’s Model: Conclusion Massive nucleus of diameter m and combined proton mass equal to half of the nuclear mass Planetary model: Electrons.
Chapter 40 Introduction to Quantum Physics. Need for Quantum Physics Problems remained from classical mechanics that relativity didn’t explain Attempts.
Bohr Model and Quantum Theory
4: Introduction to Quantum Physics
Origin of Quantum Theory
The Nature of Light: Its Wave Nature Light is a form of made of perpendicular waves, one for the electric field and one for the magnetic field All electromagnetic.
Electrons in Atoms Light is a kind of electromagnetic radiation. All forms of electromagnetic radiation move at 3.00 x 10 8 m/s. The origin is the baseline.
Light is a Particle Physics 12.
Need for Quantum Physics Problems remained from classical mechanics that relativity didn’t explain Problems remained from classical mechanics that relativity.
Ch2 Bohr’s atomic model Four puzzles –Blackbody radiation –The photoelectric effect –Compton effect –Atomic spectra Balmer formula Bohr’s model Frank-Hertz.
Unit 12: Part 2 Quantum Physics. Overview Quantization: Planck’s Hypothesis Quanta of Light: Photons and the Photoelectric Effect Quantum “Particles”:
Chapter 33 Early Quantum Theory and Models of Atom.
Physics 213 General Physics Lecture Exam 3 Results Average = 141 points.
QUANTUM AND NUCLEAR PHYSICS. Wave Particle Duality In some situations light exhibits properties that are wave-like or particle like. Light does not show.
Photon-matter interactions Contents: Photoelectric effect Compton scattering Pair production.
Light is a Particle Physics 12 Adv. Blackbody Radiation A blackbody is a perfect emitter; that is it emits the complete EM spectrum Work done by Gustav.
3.1 Discovery of the X-Ray and the Electron 3.2Determination of Electron Charge 3.3Line Spectra 3.4Quantization 3.5Blackbody Radiation 3.6Photoelectric.
Quantum Theory and the Electronic Structure of Atoms Chapter 7.
1© Manhattan Press (H.K.) Ltd Continuous spectra Spectra Sun’s spectrum and Fraunhofer lines.
Lecture_04: Outline Photoelectric Effect  Experimental facts  Einstein’s explanation  Problems.
3.1 Discovery of the X-Ray and the Electron 3.2Determination of Electron Charge 3.3Line Spectra 3.4Quantization 3.5Blackbody Radiation 3.6Photoelectric.
Chapter 28 Quantum Physics
Chapter 29 Atomic Physics.
Origin of Quantum Theory
Atomic Physics & Quantum Effects
Chapter 27 Early Quantum Theory
Chapter 29 Photoelectric Effect
Elementary Quantum Mechanics
Photoelectric Effect And Quantum Mechanics.
Presentation transcript:

Chapter 38 Photons, Electrons, and Atoms (About quantization of light, energy and the early foundation of quantum mechanics)

Blackbody Blackbody: A “perfect” absorber. For example, a hole in a cavity. It turns out a blackbody must also emit radiation, so a blackbody is not really “black”. The radiation from a blackbody depends only on the temperature of the cavity.

Blackbody Radiation The radiation from a wide variety of sources can be approximated as blackbody radiation: Coal, sun, human body (infrared) As mentioned such radiation depends only on the temperature of the object, and is sometimes refer to as the thermal radiation.

Material Independence It is observed that as an object gets hotter, the predominant wavelength of the radiation emitted by the object decreases (hence the frequency increases). Example: As temperature increases: Infrared  Red  Yellow  White This is true regardless of the material that made up the blackbody. Objects in a furnace all glow red with the furnace walls regardless of their size, shape or materials.

Temperature Dependence The peak of the wavelength distribution shifts to shorter wavelengths as the temperature increases:

Conflict with classical physics Ultraviolet catastrophe

Max Planck and Planck’s constant (1900) Proposed energy on the cavity wall: h becomes known as the Planck’s constant: All quantum calculations involves h. Sometimes it is more convenient to use:

The idea behind Planck’s equation means it is now more difficult (or energy costly) to excite a mode of higher frequency. As a result less high frequency (low wavelength) radiations are produced, preventing ultraviolet catastrophe. Classical, the cost of a high frequency mode is the same as that of a low frequency mode.

Quantization of Energy The energy emitted or absorbed by the energy transition of the cavity wall is therefore given by: The cavity cannot emit half of hf. Energy in the radiation only exists in packages (quanta) of hf.

But why hf ? Even Planck himself could not give a more fundamental reason why the equation E=hf makes sense, except that it appeared to describe blackbody radiation perfectly. Planck continues to try to find a “better” explanation. Today physicists generally accept this equation as an observed fact of nature. Its introduction is regarded as the beginning of quantum mechanics.

Photoelectric Effect When light shines on certain metals, electrons are sometimes released. The emitted electrons are sometimes referred to as photoelectrons. We can measure the energy of the photoelectrons using the setup below:

The Setup When the external potential ξ is connected as shown, it helps the electrons to flow, generating a non-zero current when photoelectrons are produced.

Reversing the potential Now the external potential ξ is reversed. It actually resists the flow of the electrons. When the potential is big enough, it can even stop the current completely. This is the stopping potential V s.

The stopping potential and the number of photoelectrons Such an experiment measures the stopping potential V s, the external potential required to stop the flow of current completely. From V s one can deduce the maximum KE of the photoelectrons emitted by the metal, because by conservation of energy: By studying the KE and N e of the photoelectrons, further contradictions with classical physics were found. On the other hand, the current gives a measurement of the rate of electrons released. Roughly speaking, one can say:

Photoelectric Effect, Results The maximum current increases as the intensity of the incident light increases When applied voltage is equal to or more negative than V s, the current is zero

Photoelectric Effect Feature 1 Dependence of ejection of electrons on light frequency Classical Prediction Electrons should be ejected at any frequency as long as the light intensity is high enough Experimental Result No electrons are emitted if the incident light falls below some cutoff frequency, f c, regardless of intensity The cutoff frequency is characteristic of the material being illuminated No electrons are ejected below the cutoff frequency

Photoelectric Effect Feature 2 Dependence of photoelectron kinetic energy on light frequency Classical Prediction There should be no relationship between the frequency of the light and the electric kinetic energy The kinetic energy should be related to the intensity of the light Experimental Result The maximum kinetic energy of the photoelectrons increases with increasing light frequency

Photoelectric Effect Feature 3 Dependence of photoelectron kinetic energy on light intensity Classical Prediction Electrons should absorb energy continually from the electromagnetic waves As the light intensity incident on the metal is increased, the electrons should be ejected with more kinetic energy Experimental Result The maximum kinetic energy is independent of light intensity The current goes to zero at the same negative voltage for all intensity curves

Photoelectric Effect Feature 4 Time interval between incidence of light and ejection of photoelectrons Classical Prediction For very weak light, a measurable time interval should pass between the instant the light is turned on and the time an electron is ejected from the metal This time interval is required for the electron to absorb the incident radiation before it acquires enough energy to escape from the metal Experimental Result Electrons are emitted almost instantaneously, even at very low light intensities Less than s

Summary Action KENeNe Increase intensityNo effectsIncrease Increase frequencyIncrease Observation when f >f c : When f <f c no photoeletrons are released, independent of intensity. The cutoff frequency f c depends on the metal. Action KENeNe Increase intensityIncrease Increase frequencyNo effects Classical prediction for all f :

Frequency Dependence and Cutoff Frequency The lines show the linear relationship between KE max and f The slope of each line is h The absolute value of the y-intercept is the work function The x-intercept is the cutoff frequency This is the frequency below which no photoelectrons are emitted

Some Work Function Values

Einstein’s Explanation Energy in light comes in packages (photons). Each photon carries energy E=hf. You cannot get half a photon or 1/3 of a photon. The intensity of light is related to the number of photons present, but not to the frequency. Electrons are bind to the metal, so for an electron to escape, it needs to absorb a certain threshold amount of energy ϕ, called the work function. Each metal has a different value for ϕ. The stronger the binding to the metal, the larger is ϕ.

The Picture The picture: An electron absorbs energy hf from the radiation, spends ϕ to escape from the metal, leaving only hf - ϕ as the KE : This explains why the slope of each line is h. Increase f  Increase KE max Increase intensity  Increase number of e -

The cutoff frequency and wavelength

Photon Model Explanation of the Photoelectric Effect Dependence of photoelectron kinetic energy on light intensity KE max is independent of light intensity KE depends on the light frequency and the work function The intensity will change the number of photoelectrons being emitted, but not the energy of an individual electron Time interval between incidence of light and ejection of the photoelectron Each photon can have enough energy to eject an electron immediately

Photon Model Explanation of the Photoelectric Effect, cont Dependence of ejection of electrons on light frequency There is a failure to observe photoelectric effect below a certain cutoff frequency, which indicates the photon must have more energy than the work function in order to eject an electron Without enough energy, an electron cannot be ejected, regardless of the light intensity

Photon Model Explanation of the Photoelectric Effect, cont Dependence of photoelectron kinetic energy on light frequency Since KE max = hf – ϕ As the frequency increases, the kinetic energy will increase Once the energy of the work function is exceeded There is a linear relationship between the kinetic energy and the frequency

Rewriting hc

Photoelectric Effect Features, Summary The experimental results contradict all four classical predictions Einstein extended Planck’s concept of quantization to electromagnetic waves All electromagnetic radiation can be considered a stream of quanta, now called photons A photon of incident light gives all its energy hf to a single electron in the metal

Compton Scattering The loose electrons recoils from the momentum of the photon. The classical wave theory of light failed to explain the scattering of x-rays from electrons. The results could be explained by treating the photons as point-like particles having energy hƒ and momentum hf / c.

Conservation of P and E

Early Models of the Atom – Rutherford Rutherford Planetary model Based on results of thin foil experiments Positive charge is concentrated in the center of the atom, called the nucleus Electrons orbit the nucleus like planets orbit the sun

The trouble with the atom Maxwell’s equations says that all accelerating charge must radiate. As electrons orbits the nucleus it must also radiates continuously, hence losing energy. Result: The electron theoretically should spiral into the nucleus in a very short time ( s )… and we should all be dead.

The Bohr Theory of Hydrogen In 1913 Bohr provided an explanation of atomic spectra that includes some features of the currently accepted theory His model includes both classical and non-classical ideas He applied Planck’s ideas of quantized energy levels to orbiting electrons In this model, the electrons are generally confined to stable, non-radiating orbits called stationary states

Energy levels Bohr’s work lead to the prediction of the existence of energy levels inside atoms. The energy of an electron when measured must lie in one of the levels, it can never possess energy between two levels. In other words, the energy between the levels are forbidden. In particular, it predicts the existence of the ground state (the lowest energy level). No energy level lies below the ground state. This prevents the decay of the electron orbit because it cannot drop below the ground state. For hydrogen:

Bohr’s Hydrogen

Terminology Ground state: n =1 First excited state: n =2 Second excited state: n =3 Ionization energy: The energy required to free an electron = E ∞ -E 1 For hydrogen, the ionization energy is: E ∞ -E 1 = 0 - (-13.6eV) = 13.6eV

Energy transition of electron

Emitting a photon Find the frequency of the photon emitted when an electron drops from n=5 to n=2.

Find the wavelength and frequency for the following transitions (n): λ f

Single electron ions other than hydrogen

Atomic spectrum

Laser Light Amplification by the Stimulated Emission of Radiation. Based on three processes: a)Absorption b)Spontaneous emission c)Stimulated emission

Stimulated Emission A photon of frequency f passes and it triggers an excited electron to fall to the lower level. Same energy, same phase, polarization, direction.

Summary

Population Inversion When there are more excited atoms than atoms at ground state, it is said to be population inverted. This can only happen when the system is not in thermal equilibrium.

He-Ne Laser Selection rules forbid He 2s level from decaying via radiation, so a population inversion is created. It can decay via collision with Ne, hence creating a population inversion in Ne between the 5s and 3p levels. The decay from 5s to 3p is the laser beam.