Introduction to SOT data analysis K.Ichimoto with help of T.Berger, Y.Katsukawa, T.Yokoyama, T.Shimizu, M.Shimojo Hinode workshop, 2007.12.8-10, Beijing.

Slides:



Advertisements
Similar presentations
Hinode/EIS Data Products and Archive Access Jian Sun (MSSL)
Advertisements

2006/4/17-20 Extended 17 th SOT meeting Azimuth ambiguity resolution from dBz/dz M. Kubo (ISAS/JAXA), K. Shimada (University of Tokyo), K. Ichimoto, S.
Learning from spectropolarimetric observations A. Asensio Ramos Instituto de Astrofísica de Canarias aasensio.github.io/blog.
2007/12/08-10Hinode Workshop in China 1 XRT Analysis Software R. Kano (NAOJ) and XRT Teams.
A complete study of magnetic flux emergence, interaction, and diffusion should take into account some “anomalies” In the photosphere we can observe flux.
A complete study of magnetic flux emergence, interaction, and diffusion should take into account some “anomalies” In the photosphere we can observe flux.
1 Estimate on SOT light level in flight with throughput measurements in SOT sun tests T. Shimizu 1, T. Tarbell 2, T. Berger 2, Y. Suematsu 3, M. Kubo 1,
1 Estimate on SOT light level in flight with throughput measurements in SOT sun tests T. Shimizu 1, T. Tarbell 2, Y. Suematsu 3, M. Kubo 1, K. Ichimoto.
2006/4/17Extended Solar-B mission onboard control and data handling (data recorder, downlinks, observation tables…) Toshifumi Shimizu ISAS/JAXA.
1 Lites FPP-SP Initial Reduct SOT #17 Meeting, NAOJ, April Solar-B FPP Initial Data Reduction for the FPP Spectro- Polarimeter October, 2004 Bruce.
1 Lites FPP-SP Performance SOT #17 Meeting, NAOJ, April Solar-B FPP As-Built Performance of the FPP Spectro- Polarimeter October, 2004 FPP Team Bruce.
PROM 2007 WorkshopMonday 29-October-2007 Hinode/SOT Observations of Quiescent Prominences Thomas Berger, T. Tarbell, N. Hurlburt, B. Lites, R. Shine, G.
FALL 2007CSTR Journal Club Emergence of Small-Scale Magnetic Loops in the Quiet Sun Internetwork R. Centeno, H Socas-Navarro, B. Lites, M. Kubo High Altitude.
1 Lites CSAC SOT #17 Meeting, NAOJ, April Solar-B FPP The NCAR/HAO Community Spectro-Polarimetric Analysis Center (CSAC) Bruce W. Lites
CS485/685 Computer Vision Prof. George Bebis
Data, Calibration and Analysis with SOT/HINODE. HINODE Solar Optical Telescope (SOT) EUV Imaging Spectrometer (EIS) X-ray Telescope (XRT)
A particularly obvious example of daily changing background noise level Constructing the BEST High-Resolution Synoptic Maps from MDI J.T. Hoeksema, Y.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Direct Evidence of Emergence of a Helical Flux Rope under an Active- Region Prominence Joten Okamoto Kyoto Univ. / NAOJ JSPS Research Fellow Saku Tsuneta,
Numerical Grid Computations with the OPeNDAP Back End Server (BES)
Statistical properties of current helicity and twist distribution in the solar cycle by high resolution data from SOT/SP on board Hinode K. Otsuji 1),
UNNOFIT inversion V. Bommier, J. Rayrole, M. Martínez González, G. Molodij Paris-Meudon Observatory (France) THEMIS Atelier "Inversion et transfert multidimensionnel",
Apr 17-22, NAOJ Dopplergram from Filtergram (FG) Observation Y. Katsukawa (NAOJ) SOT Team.
M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife M. Collados Instituto de Astrofísica de Canarias CASSDA School.
Apr 17-22, NAOJ SOT Initial Operation in Commissioning Phase Y. Katsukawa (NAOJ) SOT team.
SOLAR-B data flow scheme with emphasis on SOT Masumi Shimojo SOLAR-B project/NAOJ.
Comparison on Calculated Helicity Parameters at Different Observing Sites Haiqing Xu (NAOC) Collaborators: Hongqi, Zhang, NAOC Kirill Kuzanyan, IZMIRAN,
Apr 17-22, Tunable filter wavelength scan and calibration of intensity ripple Y. Katsukawa (NAOJ) and SOT team.
1 Solar-B Data Co-Alignment Plan T.Shimizu (NAOJ) Solar-B MO&DA Working Group Solar-B 4 th Science
SOT SolarSoftWare (SSW) Overview Tom Berger, Sam Freeland, Greg Slater LMSAL SOT 17 Meeting NOAJ April 17-20, 2006.
MWO MAGNETOGRAMS L. Bertello, R.K. Ulrich, J. Boyden and T. Tran Magnetogram Workshop, UCLA, April 2-4, 2007.
Spicule observed in He Å Solar seminar in 2009 April 20 Short : Tetsu Anan HAZEL Bueno et al Nuño et al , 2, 3,
1 On-orbit SOT performance Kiyoshi Ichimoto and SOT-team Hinode workshop, , Beijing.
A. Lagg - Abisko Winter School 1. A. Lagg - Abisko Winter School 2 Why Hinode?  spectra are easier to interpret than, e.g. CRISP (continuous WL coverage)
Polarization Calibration of the Daniel K Inouye Solar Telescope (DKIST) formerly Advanced Technology Solar Telescope David Elmore Instrument Scientist.
SOT Preliminary Science Plan Tom Berger LMSAL SOT 17 Meeting NOAJ April 17-20, 2006.
Solar-B SOT/FPP 1 SOT April 2006Ted Tarbell FPP CCD Camera Performance Ted Tarbell 17-Apr-2006.
19 Oct 2005SPW41 Penumbral MMFs S Jaeggli (UHawaii) C Henney (NSO) S Luszcz (Cornell) S Walton (CSUN/SFO)
Feb 4, 20034th Solar-B Science Meeting1 SOT Scientific Observations & Operations T. Shimizu (National Astronomical Observatory of Japan)
Nonlinear force-free coronal magnetic field extrapolation scheme for solar active regions Han He, Huaning Wang, Yihua Yan National Astronomical Observatories,
Differences between central and peripheral umbral dots Michal Sobotka 1 Jan Jurcak 2,1 SXT seminar, 2008/10/10, NAOJ Astronomical Institute, Academy of.
Calibration of the Polarization Property of SOT K.Ichimoto, Y.Suematsu, T.Shimizu, Y.Katsukawa, M.Noguchi, M.Nakagiri, M.Miyashita, S.Tsuneta (National.
1 SOT Polarization Calibration -- method and results for FG -- K.Ichimoto and SOT Team SOT#
Inversions based on ME atmospheres Stokes inversions beyond ME atmospheres Luis R. Bellot Rubio Instituto de Astrofísica de Andalucía (CSIC) Granada, Spain.
A multiline LTE inversion using PCA Marian Martínez González.
Examples of SOT Observation in Performance Verification Phase M. Kubo (JAXA/ISAS) and SOT team.
14 January Observational Astronomy SPECTROSCOPIC data reduction Piskunov & Valenti 2002, A&A 385, 1095.
Measurements of Vector Magnetic Fields
COSMO Large Coronagraph Preliminary Design Review
1 Scientific Data from Solar-B Solar Optical Telescope (SOT) T.Shimizu (NAOJ) Solar-B MO&DA Working Group
Diagnostic capability of FG/SP Kiyoshi Ichimoto NAOJ Hinode workshop, , Beijing.
Calibration of Solar Magnetograms and 180 degree ambiguity resolution Moon, Yong-Jae ( 文 鎔 梓 ) (Korea Astronomy and Space Science Institute)
XRT SOT Alignment DeLuca With comments from Tarbell & Metcalf 21-Jan-2006.
SHINE 2008 Vector Magnetic Fields from the Helioseismic and Magnetic Imager Steven Tomczyk (HAO/NCAR) Juan Borrero (HAO/NCAR and MPS)
2006/4/17-20 Extended 17 th SOT meeting M. Kubo (JAXA/ISAS), K. Ichimito, Y. Katsukawa (NAOJ), and SOT-team Comparison of FG and SP data from Sun test.
IAS Hinode Data WorkshopThursday 15-November-2007 The Hinode Solar Optical Telescope Data & Calibration Dr. Thomas Berger Lockheed Martin Advanced Technology.
Champ magnétique dans la photosphère et la Couronne solaires: I - observations Véronique Bommier LERMA Paris-Meudon Observatory THEMIS SEMHD-ENS, 24 avril.
Application of a Charge Transfer Model to Space Telescope Data Paul Bristow Dec’03
SOLIS-VSM Magnetic Synoptic Maps
UFOAnalyzerV2 (UA2) the key of accuracy
NHSC/PACS Web Tutorials
Examinations of the relative alignment of the instruments on SOT
NIRSpec simulation data-package
On-Orbit Performance and Calibration of the HMI Instrument J
T. J. Okamoto (NAOJ/Kyoto Univ.)
Scientific Collaboration of NAOC Facilities & Solar-B
Observations of emerging and submerging regions with ASP and Solar-B
Soothing Massage of HMI Magnetic Field Data
106.13: A Makeover for HMI Magnetic Field Data
Presentation transcript:

Introduction to SOT data analysis K.Ichimoto with help of T.Berger, Y.Katsukawa, T.Yokoyama, T.Shimizu, M.Shimojo Hinode workshop, , Beijing

How to find data? - DARTSJAXA data archive/ search system (  Kano) - Quick Look movies (NAOJ) - Operation info. (LMSAL) (timeline for pointing, target, obs. purpose etc.)

NAOJ Quick Look movies

LMSAL operation info.

How to get images on your WS? IDL> hinode_server_select, /darts; set a remote server IDL> time0 = '09-Dec-2006T11:30:00' IDL> time1 = '09-Dec-2006T15:00:00' IDL> sot_cat, time0, time1, /level0, cat, files, /URLS IDL> help, files FILES STRING = Array[2994] IDL> ss = sot_umodes(cat,/int); interactive selection of data IDL> sock_copy, files[ss], out_dir='./demo‘ ; copy to local disk IDL> lfiles = file_list(‘./demo’, ’*.fits*') IDL> read_sot, lfiles[0], index, dat; read SOT fits file IDL> help, index, dat INDEX STRUCT = -> MS_ Array[1] DAT INT = Array[2048, 1024] IDL> tvscl,dat : On SSW IDL… Sample programs for tutorial are found in $SSW/hinode/sot/doc/paris/*.pro Courtesy by Dr. Tom Berger

SOT analysis software 3 Dec 2007 Y. Katsukawa (NAOJ) T.Berger (LMSAL)

FG Photometric corrections: Level-0 ⇒ Level-1 Camera readout errors: fg_shift_pix.pro –Central 2 vertical lines of camera dropped in partial-camera readout. –Top line wrapped around to bottom. –1x1 and 2x2 are supported. 4x4 still in development. Dark current and pedestal subtraction: fg_dark_sub.pro –FG camera 4096 x 2048 split-frame read-out: 2048x2048 frames. Each has different pedestal. –Pedestal is temperature dependent. Linear combination of camera and electronics box temperatures. –1x1 and 2x2 are supported. 4x4 still in development. Flat field correction: fg_flatfield.pro – Flat fields are created by Kuhn-Lin algorithm. – Currently there are flat images only for CN (also used for Ca II H-line images) G-band Blue continuum Green continuum Red continuum Fe I (affected by a big bubble) Na ID (affected by a big bubble) Mg Ib (affected by a big bubble) H-alpha (affected by a big bubble) Bad camera pixel correction via map: fg_bad_pix.pro Cosmic ray removal: sot_nospike.pro Correction for BFI/NFI plate-scale difference and image shifts: fg_reg_wave.pro

Dark and flat field Avg. Pedestal = 192Avg. Pedestal = 187 Dark frame example Flat field example (G-band)

FG Photometric corrections Accomplished via fg_prep.pro (Tom Berger: Yukio Katsukawa: BFI simple filtergrams corrected completely NFI data product corrected: –FG (simple filtergram) –FGIV (shuttered IV) –FGIQUV (shuttered IQUV) –Shutterless modes still in development. Polarization calibration still in development Call formats IDL> fg_prep, index, data, index_out, data_out, /despike IDL> fg_prep, filename_list, -1, index_out, data_out, /despike IDL> fg_prep, index, data, index_out, data_out, /despike, $ x0=256, y0=256, subimgx=768, submigy=512

SP Photometric corrections: Level-0 ⇒ Level-1 Camera readout errors Dark current and pedestal subtraction –No shutter for SP: darks only taken before SOT door-open. –Eclipses may offer more. Flat field correction Polarimetric calibration FPP temperature warping –Slit positions wanders vertically during scans. –Spectral lines also wander in the diespersion direction Combine two spectra Accomplished by sp_prep.pro (Bruce Lites: Kiyoshi Ichimoto: Sam Call formats IDL> sp_prep, filename_list, outdir=directory_name

BFI red continuum,level-0

BFI red continuum,level-1

SP4D _ fitslevel-0 I -Q -U -VI Q U V

SP4D _ fitslevel-1 I Q U V

FPP +Q +U UU View from the top of SOT QQ VV +V View towards the sun S/C +Y S/C +X W N S E +Q QQ UU +U VV +V Definition of SOT polarization coordinate This definition is the same as that used in the analysis of the suntest data of and consistent with the ASP definition, ie. positive V at blue side of spectral line gives positive magnetic flux. This is also consistent with the definition of Stokes V: (right circ. – left circ.), where right circular polarization is positive when electric vector rotates clockwise looking at the source. This definition is applied to the Stokes vectors obtained after application of the X-matrix. Raw Stokes products of FPP are not consistent with this definition.

IDL program to obtain X X = nfi_pcalx(wav, obs_id=obs_id, expo=expo, $ id_table=id_table, calver=calver, progver=progver) INPUT: wav - wavelength [nm], 517.2, 525.0, 589.6, 630.2, obs_id - Obs_ID expo - exposure time [ms], input for shutter mode, output for shutterless mode. id_table - Obs_id list file, default: 'C:\Hinode\ops\dbase\fpptbl\OBS_ID_ txt' OUTPUT: calver - version of calibration data ex. ‘delay_ /Tmat_ ’ progver - program version RETURN: X = X[4,4]for shuttered IQUV mode = X[4,4,2]for shutterless IQUV mode giving X for left and right CCD = X[4,2]for shuttered IV mode = X[4,2,2]for shutterless IV mode = X[4]for shuttered FG

Usage of X to calibrate the SOT products:  Stokes IQUVX[4,4] or X[4,4,2] shuttered S = X -1 S obs shutterless S left = X[*,*,0] -1 S obs,left S righ = X[*,*,1] -1 S obs,right  IV (mag.) X[4,2] or X[4,2,2] shutteredI = I obs, X[1,0] gives degree of Q  I crosstalk V = V obs / X[3,1], shutterless I = I obs, X[1,0,*] gives degree of Q  I crosstalk V left = V obs,left / X[3,1,0] V right = V obs,right / X[3,1,1]  I simpleX[4](only shutter mode) I = I obs, X[1-3] gives degree of Q,U,V  I crosstalk  IUVX[4,3,2] (only shutterless mode) I = I obs, X[1,0,*] gives degree of Q  I crosstalk U left = U obs,left / X[3,1,0], U right = U obs,right / X[3,1,1] V left = V obs,left / X[3,2,0], V right = V obs,right / X[3,2,1] and so on..

Diagnostics using SP data Zeeman effect produces polarization in spectral lines Obtain magnetic field vectors and motions in solar atmosphere. slit

Milne-Eddington fitting program of the Hinode SOT/SP data T. Yokoyama (U. Tokyo) Y. Katsukawa, M. Shimojo S. Tsuneta, Y. Suematsu, K. Ichimoto (NAOJ) T. Shimizu (JAXA), S. Nagata (Kyoto U.) M. Kubo, B. Lites, H. Socas-Navarro (HAO) Hinode SOT Japan/US team Kosugi Memorial workshop NAOJ, Mitaka

Introduction – Stokes ME fitting Fitting (inversion) –In the fitting procedure, we iteratively solve a “forward problem” which is described by the radiative transfer equations including the Zeeman effect. –It is necessary to do a huge amount of computations. So we need an approximation for the efficient (semi- automatic pipeline) process of the data. The Milne-Eddington (ME) atmosphere model –The Unno-Rachkovsky solution The solution is simply described by a set of algebraic eqs. Previous codes –ASP code ( Skumanich & Lites 1987) –MELANIE ( Socas-Navarro) –…

Atmospheric parameters Bmagnetic field strength 、  “ incliation Φ “ azimuth Λ 0 line shift Δλ D Doppler width adamping Η 0 line/continuum abs. ratio B 0 source function B 1 source function gradient Milne-Eddignton atmosphere ○ Radiative transfer eq. and assumption e.g., J.C. del Toro Iniesta, ‘Spectropolarimetry’ 2002

SOT/SP fitting code demands –high-performance –Tune-up + Parallelization Contents of the code –Written in Fortran 90 with IDL front-ends –Derivation of a first guess PIKAIA code (HAO, Charbonneau) Genetic algorithm –Fitting Based on MELANIE (HAO, Socas-Navarro) Lebenburg-Mardquard method –Infer the 180-degree azimuth ambiguity MAGPACK2 (Sakurai) By comparison with the potential field performance –~50 msec/pixel –14 hours for a 1k^2 image. But < 1 hour by a 16-cpu parallel run.

Fitting results: NOAA B strengthinclinationazimuth Doppler vel.Doppler width Line strength dampingSource funct.Source grad.Macro turb.Straylit fract.Straylight shift Complement number of the filling factor

Comparison with the ASP code’s results inclination azimuth Field strength Straylight fraction Left: SOT/SP Right: ASP code

Comparison with the results obtained by the ASP code Almost consistent. There is a crosstalk between the field strength and the staylight fraction when B is weak. But the average magnetic flux density is consistent. Field strengthinclination Inclination Straylight fraction Flux density

Level-2 data will be available on the web (DARTS) in near future. Program for simple IQUVD maps files[*] contains SP4D file names ; iint=[95,105]; interval for contin image l01=30; line (6301.5) position vint1=[5,50]; interval for Dopp. (CG) < l0=75 &w1=2 &w2=10; line (6302.5) position and integ interval, sp_prep.pro vint=[57,100]; interval for Dopp. (CG) < ; nf=n_elements(files) xp=findgen(vint[1]-vint[0]+1)-(vint[1]-vint[0])/2. smap=fltarr(nf,ny,5) for i=0,nf-1 do begin print,i,' ',files[i] s1=gt_sotfits(files[i],fh=fh1,sth=h1) smap[i,*,0]=rebin(s1[iint[0]:iint[1],*,0],1,ny); I smap[i,*,1]=rebin(s1[l0-w2:l0-w1,*,1],1,ny)+rebin(s1[l0+w1:l0+w2,*,1],1,ny); Q smap[i,*,2]=rebin(s1[l0-w2:l0-w1,*,2],1,ny)+rebin(s1[l0+w1:l0+w2,*,2],1,ny); U smap[i,*,3]=rebin(s1[l0-w2:l0-w1,*,3],1,ny)-rebin(s1[l0+w1:l0+w2,*,3],1,ny); V iprof=s1(vint(0):vint(1),j,0) iprofr=max(iprof)-iprof smap[i,j,4]=total(xp*iprofr)/total(iprofr); CG Dop. endfor

Hinode Calibration for Precise Image Co-alignment between SOT and XRT (November April 2007) T.Shimizu (ISAS/JAXA) et al, 2007, PASJ, 59, Image co-alignment

SOT internal image alignment & scale BFI from read data NFI from ground test (Okamoto etal 2007) Note (1): The offset at the center pixel (2047.5, ) of the full frame (4K×2K) images to the center pixel of G-band (4305) data. The offset is given in the pixel unit of original image at each wavelength before scaling its magnification. Note (2): Scale deviation from the G-band data. The value larger than 1 means that the pixel scale of original image at each wavelength is larger than that of G-band image.

Roll angle offset of SOT/BFI and XRT CCD frames from the solar north direction. SOT-XRT offset from the Mercury transit on

Time variation of pointing wrt. the sun (or sun-sensor) Orbital variationLong-term variation

Need to be done many Hinode Solar Optical Telescope Data Analysis Guide will appear soon