CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 31 and 32– Brain and Perceptron.

Slides:



Advertisements
Similar presentations
CS344: Principles of Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 11, 12: Perceptron Training 30 th and 31 st Jan, 2012.
Advertisements

Learning in Neural and Belief Networks - Feed Forward Neural Network 2001 년 3 월 28 일 안순길.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 15, 16: Perceptrons and their computing power 6 th and.
Neural Network I Week 7 1. Team Homework Assignment #9 Read pp. 327 – 334 and the Week 7 slide. Design a neural network for XOR (Exclusive OR) Explore.
B.Macukow 1 Lecture 3 Neural Networks. B.Macukow 2 Principles to which the nervous system works.
Artificial Intelligence (CS 461D)
Connectionist Modeling Some material taken from cspeech.ucd.ie/~connectionism and Rich & Knight, 1991.
Carla P. Gomes CS4700 CS 4700: Foundations of Artificial Intelligence Prof. Carla P. Gomes Module: Intro Neural Networks (Reading:
AN INTERACTIVE TOOL FOR THE STOCK MARKET RESEARCH USING RECURSIVE NEURAL NETWORKS Master Thesis Michal Trna
Artificial Neural Networks - Introduction -
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
CHAPTER 12 ADVANCED INTELLIGENT SYSTEMS © 2005 Prentice Hall, Decision Support Systems and Intelligent Systems, 7th Edition, Turban, Aronson, and Liang.
Neurons, Neural Networks, and Learning 1. Human brain contains a massively interconnected net of (10 billion) neurons (cortical cells) Biological.
MSE 2400 EaLiCaRA Spring 2015 Dr. Tom Way
Artificial Intelligence Lecture No. 28 Dr. Asad Ali Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology.
Chapter 14: Artificial Intelligence Invitation to Computer Science, C++ Version, Third Edition.
Neural Networks AI – Week 21 Sub-symbolic AI One: Neural Networks Lee McCluskey, room 3/10
Artificial Neural Nets and AI Connectionism Sub symbolic reasoning.
Introduction to Neural Networks. Neural Networks in the Brain Human brain “computes” in an entirely different way from conventional digital computers.
 The most intelligent device - “Human Brain”.  The machine that revolutionized the whole world – “computer”.  Inefficiencies of the computer has lead.
Artificial Neural Network Yalong Li Some slides are from _24_2011_ann.pdf.
Artificial Neural Networks. Applied Problems: Image, Sound, and Pattern recognition Decision making  Knowledge discovery  Context-Dependent Analysis.
Machine Learning Dr. Shazzad Hosain Department of EECS North South Universtiy
1 Machine Learning The Perceptron. 2 Heuristic Search Knowledge Based Systems (KBS) Genetic Algorithms (GAs)
NEURAL NETWORKS FOR DATA MINING
Biology and Behavior Chapter 3. The Nervous System Central Nervous System – consists of the brain and spinal cord. Central Nervous System – consists of.
Artificial Neural Networks. The Brain How do brains work? How do human brains differ from that of other animals? Can we base models of artificial intelligence.
1 Pattern Classification X. 2 Content General Method K Nearest Neighbors Decision Trees Nerual Networks.
CS621: Artificial Intelligence Lecture 11: Perceptrons capacity Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
Elements of Neuronal Biophysics The human brain Seat of consciousness and cognition Perhaps the most complex information processing machine in nature.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 19: Fuzzy Logic and Neural Net Based IR.
CS344 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 29 Introducing Neural Nets.
CS623: Introduction to Computing with Neural Nets Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 41,42– Artificial Neural Network, Perceptron, Capacity 2 nd, 4 th Nov,
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 31: Feedforward N/W; sigmoid.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 21 Computing power of Perceptrons and Perceptron Training.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 29: Perceptron training and.
Mehdi Ghayoumi MSB rm 132 Ofc hr: Thur, a Machine Learning.
CS621 : Artificial Intelligence
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 32: sigmoid neuron; Feedforward.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 21: Perceptron training and convergence.
Artificial Neural Networks Chapter 4 Perceptron Gradient Descent Multilayer Networks Backpropagation Algorithm 1.
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
CS 621 Artificial Intelligence Lecture /11/05 Guest Lecture by Prof
Biology and Behavior Ch.3 Holt- Psychology Principals in Practice.
1 Perceptron as one Type of Linear Discriminants IntroductionIntroduction Design of Primitive UnitsDesign of Primitive Units PerceptronsPerceptrons.
Artificial Intelligence CIS 342 The College of Saint Rose David Goldschmidt, Ph.D.
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
CSC321: Neural Networks Lecture 1: What are neural networks? Geoffrey Hinton
Perceptron vs. the point neuron Incoming signals from synapses are summed up at the soma, the biological “inner product” On crossing a threshold, the cell.
Where are we? What’s left? HW 7 due on Wednesday Finish learning this week. Exam #4 next Monday Final Exam is a take-home handed out next Friday in class.
“Principles of Soft Computing, 2 nd Edition” by S.N. Sivanandam & SN Deepa Copyright  2011 Wiley India Pvt. Ltd. All rights reserved. CHAPTER 2 ARTIFICIAL.
1 Azhari, Dr Computer Science UGM. Human brain is a densely interconnected network of approximately neurons, each connected to, on average, 10 4.
March 31, 2016Introduction to Artificial Intelligence Lecture 16: Neural Network Paradigms I 1 … let us move on to… Artificial Neural Networks.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 20: Neural Net Basics: Perceptron.
CS621: Artificial Intelligence Lecture 10: Perceptrons introduction Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay.
CS 621 Artificial Intelligence Lecture /11/05 Guest Lecture by Prof. Rohit Manchanda Biological Neurons - II.
Biological basis of behavior
Artificial Intelligence (CS 370D)
Artificial neural networks:
CS344: Introduction to Artificial Intelligence (associated lab: CS386)
Dr. Unnikrishnan P.C. Professor, EEE
Machine Learning. Support Vector Machines A Support Vector Machine (SVM) can be imagined as a surface that creates a boundary between points of data.
Machine Learning. Support Vector Machines A Support Vector Machine (SVM) can be imagined as a surface that creates a boundary between points of data.
Machine Learning. Support Vector Machines A Support Vector Machine (SVM) can be imagined as a surface that creates a boundary between points of data.
Artificial Intelligence Lecture No. 28
CS 621 Artificial Intelligence Lecture /10/05 Prof
CS344: Introduction to Artificial Intelligence
CS344 : Introduction to Artificial Intelligence
CS621 : Artificial Intelligence
Presentation transcript:

CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 31 and 32– Brain and Perceptron

The human brain Seat of consciousness and cognition Perhaps the most complex information processing machine in nature Historically, considered as a monolithic information processing machine

Beginner’s Brain Map Forebrain (Cerebral Cortex): Language, maths, sensation, movement, cognition, emotion Cerebellum: Motor Control Midbrain: Information Routing; involuntary controls Hindbrain: Control of breathing, heartbeat, blood circulation Spinal cord: Reflexes, information highways between body & brain

Brain : a computational machine? Information processing: brains vs computers  brains better at perception / cognition  slower at numerical calculations  parallel and distributed Processing  associative memory

Brain : a computational machine? (contd.) Evolutionarily, brain has developed algorithms most suitable for survival Algorithms unknown: the search is on Brain astonishing in the amount of information it processes –Typical computers: 10 9 operations/sec –Housefly brain: operations/sec

Brain facts & figures Basic building block of nervous system: nerve cell (neuron) ~ neurons in brain ~ connections between them Connections made at “synapses” The speed: events on millisecond scale in neurons, nanosecond scale in silicon chips

Neuron - “classical” Dendrites –Receiving stations of neurons –Don't generate action potentials Cell body –Site at which information received is integrated Axon –Generate and relay action potential –Terminal Relays information to next neuron in the pathway

Computation in Biological Neuron Incoming signals from synapses are summed up at the soma, the biological “inner product” On crossing a threshold, the cell “fires” generating an action potential in the axon hillock region Synaptic inputs: Artist’s conception

Symbolic AI Connectionist AI is contrasted with Symbolic AI Symbolic AI - Physical Symbol System Hypothesis Every intelligent system can be constructed by storing and processing symbols and nothing more is necessary. Symbolic AI has a bearing on models of computation such as Turing Machine Von Neumann Machine Lambda calculus

Turing Machine & Von Neumann Machine

Challenges to Symbolic AI Motivation for challenging Symbolic AI A large number of computations and information process tasks that living beings are comfortable with, are not performed well by computers! The Differences Brain computation in living beings TM computation in computers Pattern Recognition Numerical Processing Learning oriented Programming oriented Distributed & parallel processing Centralized & serial processing Content addressable Location addressable

Neural Computation

Some Observation on the brain Ray Kurzweil, The Singularity is Near, Machines will be able to out-think people within a few decades. But brain arose through natural selection Contains layers of systems for that arose for one function and then were adopted for another even if they do not work perfectly

Difference between brain and computers Highly efficient use of energy in brain High Adaptability Tremendous amount of compressions: space is a premium for the cranium One cubic centimeter of numna brain tissue contains –50 million neurons –Several hundred miles of axons which are “wires” for transmitting signals –Close to trillion synapses- the connections between neurons

Immense memory capacity 1 cc contains 1 terabyte of information About 1000 cc makes up the whole brain So about 1 million gigabyte or 1 petabyte of information Entire archived cntent of internet is 3 petabyte

Moore’s law Every year doubles the storage capacity Single computer the size of brain will contain a petabyte of information by 2030 Question mark: Power Consumption?

Power issues By 2025, the memory of an artificial brain will use nearly a gigawatt of power: the amount currently consumed by entire Washington DC Contrastedly: brain uses only 12 watts or power, less than the energy used by a typical refrigerator light

Brain vs. computer’s procesing Associative memory vs. adressable memory Parallel Distributed Processing (PDP) vs. Serial computation Fast responses to complex situations vs. precisely repeatable steps Preference for Approximations and “good enough” solutions vs exact solutions Mistakes and biases vs. cold logic

Brain vs. Computers (contd.) Excellent pattern recognition vs. excellent number crunching Emotion- brain’s steerman- assigning values to experiences and future possibilities vs. computer being insensitive to emotions Evaluate potential outcomes efficiently and rapidly when information is uncertain vs. “Garbage in Garbage out” situation”

Perceptron

The Perceptron Model A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron. Output = y wnwn W n-1 w1w1 X n-1 x1x1 Threshold = θ

θ 1 y Step function / Threshold function y = 1 for Σw i x i >=θ =0 otherwise ΣwixiΣwixi

Features of Perceptron Input output behavior is discontinuous and the derivative does not exist at Σw i x i = θ Σw i x i - θ is the net input denoted as net Referred to as a linear threshold element - linearity because of x appearing with power 1 y= f(net): Relation between y and net is non-linear

Computation of Boolean functions AND of 2 inputs X1 x2 y The parameter values (weights & thresholds) need to be found. y w1w1 w2w2 x1x1 x2x2 θ

Computing parameter values w1 * 0 + w2 * 0 = 0; since y=0 w1 * 0 + w2 * 1 <= θ  w2 <= θ; since y=0 w1 * 1 + w2 * 0 <= θ  w1 <= θ; since y=0 w1 * 1 + w2 *1 > θ  w1 + w2 > θ; since y=1 w1 = w2 = = 0.5 satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions OR can be computed using values of w1 = w2 = 1 and = 0.5 XOR function gives rise to the following inequalities: w1 * 0 + w2 * 0 = 0 w1 * 0 + w2 * 1 > θ  w2 > θ w1 * 1 + w2 * 0 > θ  w1 > θ w1 * 1 + w2 *1 <= θ  w1 + w2 <= θ No set of parameter values satisfy these inequalities.

Threshold functions n # Boolean functions (2^2^n) #Threshold Functions (2 n^2 ) K 1008 Functions computable by perceptrons - threshold functions #TF becomes negligibly small for larger values of #BF. For n=2, all functions except XOR and XNOR are computable.