Neutrino Physics Caren Hagner Universität Hamburg Caren Hagner Universität Hamburg Part 3: Absolute neutrino mass Introduction beta decay double beta decay.

Slides:



Advertisements
Similar presentations
IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June or Lepton number conservation or violation Has neutrino a finite.
Advertisements

Absolute neutrino mass determination with the experiment KATRIN
Neutrino masses Determination of absolute mass scale with beta decays:
1 CRACOW EPIPHANY CONFERENCE ON NEUTRINOS AND DARK MATTER January 2006, Cracow, Poland ● Introduction ● Neutrino mass determination ● The Karlsruhe.
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
April-June )Oscillations: 2)Kinematics in weak decays: 3) 0 double beta decay: ?
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
Neutrino Physics - Lecture 1 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
Neutrino Physics Steve Elliott LANL Nuclear Physics Summer School 2005.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
NEUTRINO PROPERTIES J.Bouchez CEA-Saclay Eurisol town meeting Orsay, 13/5/2003.
LNGS Capelli Silvia on behalf of CUORE Collaboration
Double Beta Decay Present and Future
First results from NEMO 3 Experiment V. Vasiliev (ITEP), H. Ohsumi (Saga) and Ch. Marquet Nara, Japan, June 2003 NEMO collaboration.
Direct Determination of Neutrino Mass
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
Massive neutrinos Dirac vs. Majorana
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
KATRIN - Karlsruhe Tritium Neutrino Experiment - measuring sub-eV neutrino masses G. Drexlin, FZ Karlsruhe for the KATRIN Collaboration International Europhysics.
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
Double beta decay and neutrino physics Osaka University M. Nomachi.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
Prospects in Neutrino Physics Prospects in Neutrino Physics J. Bernabeu U. Valencia and IFIC December 2007 December 2007.
The KATRIN experiment M. Beck Institut Für Kernphysik Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-str Münster Motivation The Experiment.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Béla Majorovits for the GERDA collaboration ICHEP 2012, Melbourne, Australia, July Béla Majorovits for the GERDA collaboration Status and plans.
Prospects in Neutrino Physics Prospects in Neutrino Physics J. Bernabeu U. Valencia, IFIC and CERN Pontecorvo School September 2007.
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
NEMO3 analysis and SuperNEMO development Benjamin Richards D14.
Search for Sterile Neutrino Oscillations with MiniBooNE
1 Neutrino Physics 2 Pedro Ochoa May 22 nd What about solar neutrinos and the solar neutrino problem? KamLAND uses the entire Japanese nuclear.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 Direct Measurements of the Neutrino Mass Klaus Eitel Forschungszentrum.
KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 1 KATRIN: An experiment to.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
Neutrino physics: The future Gabriela Barenboim TAU04.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
Search for 0nbb decay with SuperNEMO
KATRIN: A next generation neutrino mass experiment
Search for Lepton-number Violating Processes
Presentation transcript:

Neutrino Physics Caren Hagner Universität Hamburg Caren Hagner Universität Hamburg Part 3: Absolute neutrino mass Introduction beta decay double beta decay

Evidence for Neutrino Oscillations: Neutrino oscillations were observed in 2 regions: Solar neutrinos and reactor neutrinos v e → v μ,τ with Δm 2 ≈ 8·10 -5 eV 2, large mixing Atmospheric neutrinos and accelerator neutrinos v μ → v τ,(s) mit Δm 2 ≈ 2·10 -3 eV 2, maximal mixing LSND? Anti-v μ → Anti-v e with Δm 2 ≈ 1 eV 2 (Tested by MiniBooNE) Neutrino oscillations were observed in 2 regions: Solar neutrinos and reactor neutrinos v e → v μ,τ with Δm 2 ≈ 8·10 -5 eV 2, large mixing Atmospheric neutrinos and accelerator neutrinos v μ → v τ,(s) mit Δm 2 ≈ 2·10 -3 eV 2, maximal mixing LSND? Anti-v μ → Anti-v e with Δm 2 ≈ 1 eV 2 (Tested by MiniBooNE) Neutrinos have mass! m lightest v ? (3)

Nature of Neutrino Mass I Neutrino fields v(x) with mass m are described by the Dirac equation: The left-handed and right-handed components are: This leads to a system of two coupled equations: With m=0 one obtains the decoupled Weyl equations: From Goldhaber experiment one knows that v L is realized. With m=0 there is no need to have v R. Therefore there were no v R in the Standard Model. 4 component spinor 2 components each

Dirac mass term Dirac Mass Term The neutrino mass term in L could have exactly the same form as the mass term of the quarks and charged leptons: m Must add v R (right handed SU(2) singlets) to standard model! Problem: When the mechanism is the same, why are the masses so small? m t = ± 5.1 GeV; m b = ( ) GeV; m τ = ± 0.29 MeV; m 3 < 2eV Lepton number is conserved! Footnote: A Lorentz invariant mass term must link a chirally left-handed field with a chirally right handed field

Majorana Particles Because neutrinos carry no electric charge (and no color charge), there is the possibility: particle ≡ anti-particle Majorana particle particle anti-particle (charge conjugate field): for a Majorana particle: But what about experiments? Anti-neutrinos(reactor): Neutrinos (solar): observed! not observed! There are two different states per flavor but the difference could be due to left-handed and right-handed states!

Majorana Mass Term Note that is a left-handed field and is a right-handed field Footnote: A Lorentz invariant mass term must link a chirally left-handed field with a chirally right handed field Let’s try vLvL left handed field (v L ) c right handed field mLmL ok! works too! Lepton number violation!

Construct the Majorana fields: Eigenstates of the interaction: v L and v R Mass eigenstates: Φ 1 (mass m L ), Φ 2 (mass m R )

Dirac-Majorana Mass Term mass matrix M mass term for each flavor: In order to obtain the mass eigenstates one must diagonalize M: find unitary U with with with the mass eigenstates:and mass eigenvalues:

What if… 1. m L = m R = 0: pure Dirac case θ = 45, m 1 =m 2 =m D. 2 degenerate Majorana states can be combined to form 1 Dirac state. 2. m D = 0: pure Majorana case θ = 0, m 1 =m L m 2 =m R 3. m R ≫ m D, m L = 0: seesaw model θ = m D /m R ≪ 1 per neutrino flavor: one very light Majorana neutrino v 1L = v L one very heavy Majorana neutrino v 2L = (v R ) c m D of the order of lepton masses, m R reflects scale of new physics ⇒ explains small neutrino masses! mRmR mDmD

Lower Limit of Neutrino Mass Super-K (atmospheric neutrinos):  m 2 atm = 2.5 × eV 2  m(ν i ) ≥ 0.05 eV This sets the energy scale for mass search!

Which mass hierarchy? v1v1 v2v2 Δm solar v3v3 Δm atm inverted hierarchy v3v3 v1v1 v2v2 Δm solar Δm atm normal hierarchy 0.05 eV - Lightest neutrino mass not known - Δm 2 atm 0 ? ? 0 v3v3 v1v1 v2v2 ≲ 2 eV quasi-degenerate 0

Neutrino Mass Measurements Strategies cosmology &structure formation D.N. Spergel et al:  m < 0.69 eV (95%CL) S.W. Allen et al:  m = 0.56 eV (best fit) 0  decay: NEMO3 76 LNGS ´90-´03 (71.7 kg×y) |m ee |= eV 2  SuperK, SNO, OMNIS + grav.waves: potential for ~1eV sensitivity? astrophysics: supernova time of flight measurements ? 3H3H 187 Re β decay kinematics: - Microcalorimeters - MAC-E spectrometers e < 2eV

β-decay u d d u d u n p W-W- e-e- veve q = 2/3 - 1/3 -1/3 = 0 q = 2/3 + 2/3 -1/3 = 1 Total kinetic energy Q ≈ maximal kinetic energy of electron

Tritium β-Decay: Mainz/Troitsk E 0 = 18.6 keV dN/dE = K × F(E,Z) × p × E tot × (E 0 -E e ) × [ (E 0 -E e ) 2 – m 2 ] 1/2

Problem: All experiments measured negative Δm 2 ! electrostatic spectrometers with MAC-E filter Only recently solved by electrostatic spectrometers with MAC-E filter

principle of an electrostatic filter with magnetic adiabatic collimation (MAC-E) adiabatic magnetic guiding of  ´s along field lines in stray B-field of s.c. solenoids: B max = 6 T B min = 3×10 -4 T energy analysis by static retarding E-field with varying strength: high pass filter with integral  transmission for E>qU

results from the MAINZ experiment Mainz Data (1998,1999,2001)

KATRIN ~70 m beamline, 40 s.c. solenoids The KArlsruhe TRItium Neutrino Experiment

KATRIN Main Spectrometer  stainless steel vessel (Ø=10m & l=22m) on HV potential  minimisation of bg  UHV: p ≤ mbar  „massless“ inner electrode system UHV requirements: outgassing < mbar l/s inner surface ~ 800m 2 volume to pump ~ 1500m 3 Ziel: Commissioning 2008

187 Re  -decay:  -calorimeters MIBETA experiment (Milano, Como, Trento) array of 10 AgReO 4 crystals M.Sisti et al, NIM A520(2004)125 A.Nucciotti et al, NIM A520(2004)148 C. Arnaboldi et al, PRL 91, (2003) E 0 = 2.46 keV T op ~ mK

free fit parameters:   endpoint energy  m 2   spectrum normal.  pile-up amplitude  background level 187 Re  decay  -calorimeters Kurie plot of 6.2 × Re  decay events above 700 eV fit range: 0.9 to 4 keV fit function m 2 = -112 ± 207 ± 90 eV 2 m < 15 eV (90%CL) (2 eV in 2007?) dN/dE = K × F(E,Z) × p × E tot × (E 0 -E e ) × [ (E 0 -E e ) 2 – m 2 ] 1/2

Double-beta decay 2 -  decay u e - d d e - W u e e W 0 -  decay e - e - d d u u W W e e Lepton number violation ΔL = 2 Lepton number violation ΔL = 2 Summenenergie der Elektronen (E/Q)

Neutrinoless Double Beta Decay d d u u e eW W n n p p v = v 0v Double Beta Decay: (A,Z)  (A,Z+2) + 2e - neutrino  anti-neutrino Majorana-neutrino: only for Majorana-neutrino and m V > 0!

Neutrinoless Double Beta Decay Effective neutrino mass in 0νββ-decay: Compare to β-decay: Phase space factor Transition matrix element Effective neutrino mass

Dirac CP-Phase Majorana CP-Phases Complex phases in the mixing matrix Cancellation possible!

in eV Masse des leichtesten Neutrinos in eV normale Hierarchie invertierte Hierarchie

0v Doppel-Beta Experimente: Ergebnisse Heidelberg-Moskau Collaboration, Eur.Phys.J. A12 (2001) 147 IGEX Collaboration, hep-ex/ , Phys. Rev. C59 (1999) × – 2.1 all 90%CL HM-K IGEX

Jedoch: ein Teil der HdM Kollaboration veröffentlicht Evidenz für 0v Doppel-Beta Zerfall! (Q = 2039 keV für 76 Ge Doppel-Beta Zerfall) ?

Zukunft: Heidelberg Ge Initiative (MPIK Heidelberg) Phase I: 20kg angereichertes (86%) 76 Ge, vgl. HDM Phase II: 100 kgJahre, 0.1 – 0.3 eV Phase III: O(1t) angereichertes 76 Ge, 10meV

CUORICINO 11 modules, 4 detector each, crystal dimension 5x5x5 cm 3 crystal mass 790 g 4 x 11 x 0.79 = kg of TeO 2 2 modules, 9 detector each, crystal dimension 3x3x6 cm 3 crystal mass 330 g 9 x 2 x 0.33 = 5.94 kg of TeO 2 2v Doppelbeta mit 130 Te (Q=2529 keV) 18 crystals 3x3x6 cm crystals 5x5x5 cm kg of TeO 2 Start in 2003 Suche nach 0v Doppelbeta: T 1/2 0v ( 130 Te) > 7.5 x y < eV 2v Doppelbeta mit 130 Te (Q=2529 keV) 18 crystals 3x3x6 cm crystals 5x5x5 cm kg of TeO 2 Start in 2003 Suche nach 0v Doppelbeta: T 1/2 0v ( 130 Te) > 7.5 x y < eV

array of 988 bolometers grouped in 19 colums with 13 flours of 4 crystals 750 kg TeO 2 => 600 kg Te = 203 kg 130 Te IL PROGETTO CUORE

3 m 4 m B (25 G) 20 sectors Source : 10 kg of  isotopes cylindrical, S = 20 m 2, e ~ 60 mg/cm 2 Tracking detector : drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O Calorimeter : 1940 plastic scintillators coupled to low radioactivity PMTs Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18 cm) Neutron shield: 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water  boron) Able to identify e , e ,  and  The NEMO3 detector Fréjus Underground Laboratory : 4800 m.w.e.

Drift distance 100 Mo foil Transverse view Longitudinal view Run Number: 2040 Event Number: 9732 Date: Geiger plasma longitudinal propagation Scintillator + PMT Deposited energy: E 1 +E 2 = 2088 keV Internal hypothesis: (  t) mes –(  t) theo = 0.22 ns Common vertex: (  vertex)  = 2.1 mm Vertex emission (  vertex) // = 5.7 mm Vertex emission Transverse view Longitudinal view Run Number: 2040 Event Number: 9732 Date: Criteria to select  events: 2 tracks with charge < 0 2 PMT, each > 200 keV PMT-Track association Common vertex Internal hypothesis (external event rejection) No other isolated PMT (  rejection) No delayed track ( 214 Bi rejection)  events selection in NEMO-3 Typical  2 event observed from 100 Mo

100 Mo kg Q  = 3034 keV  decay isotopes in NEMO-3 detector 82 Se kg Q  = 2995 keV 116 Cd 405 g Q  = 2805 keV 96 Zr 9.4 g Q  = 3350 keV 150 Nd 37.0 g Q  = 3367 keV Cu 621 g 48 Ca 7.0 g Q  = 4272 keV nat Te 491 g 130 Te 454 g Q  = 2529 keV  measurement External bkg measurement  search (All the enriched isotopes produced in Russia)

100 Mo  likelihood analysis Ec 1 +Ec 2 (keV) Data  Monte-Carlo Radon Monte-Carlo 100 Mo 6914 g days 4.10 kg.y PRELIMINARY Xavier Sarazin for the NEMO-3 Collaboration Neutrino 2004 Paris June 2004 Data  Monte-Carlo Radon Monte-Carlo  T 1/2 = Mo 6914 g days 4.10 kg.y Ec 1 +Ec 2 (keV) Previous limit V-A: T 1/2 (  ) > y (Elegant V, Ejiri et al., 2001) V-A: T 1/2 (  ) > y (90% C.L.) -Log(Likelihood) x   N  N tot ee < 0.7 – 1.2 eV

Double Beta Decay: Future to t13

End part 3