7 th 高能物理学会大会, 李小男, 高能物理研究所 1 大亚湾反应堆中微子实验 触发和数据获取系统 李小男, IHEP On behalf of 触发 : 清华大学 DAQ:IHEP.

Slides:



Advertisements
Similar presentations
Sensitivity of the DANSS detector to short range neutrino oscillations
Advertisements

Overview of the current TDR system Introduction Electronics for instrumentation TDR core : Metronome, ADC, Merge Data Handling Pete Jones, University of.
The Angra Neutrino Detector Detector, VETO and electronics conceptual design Laudo Barbosa (May 18th, 2006) Centro Brasileiro de Pesquisas Físicas (CBPF)
How to Build a Neutrino Oscillations Detector - Why MINOS is like it is! Alfons Weber March 2005.
28 August 2002Paul Dauncey1 Readout electronics for the CALICE ECAL and tile HCAL Paul Dauncey Imperial College, University of London, UK For the CALICE-UK.
Y. Karadzhov MICE Video Conference Thu April 9 Slide 1 Absolute Time Calibration Method General description of the TOF DAQ setup For the TOF Data Acquisition.
NuMI MINOS The MINOS Far Detector Cosmic Rays and their neutrinos are being collected now. How does this work, and of what use is this data? Alec Habig,
U niversity of S cience and T echnology of C hina Design for Distributed Scheme of WCDA Readout Electronics CAO Zhe University of Science and Technology.
BESIII Electronics and On-Line BESIII Workshop in Beijing IHEP Zhao Jing-wei Sheng Hua-yi He Kang-ling October 13, 2001 Brief Measurement Tasks Technical.
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
Jun Cao Institute of High Energy Physics, Beijing Daya Bay Neutrino Experiment 3rd International Conference on Flavor Physics, Oct. 3-8, 2005 National.
20/10/2008A. Alici - ALICE TOF Festival1 Electronics and data acquisition of the ALICE TOF detector A.Alici University and INFN, Bologna.
14 Sep 2005DAQ - Paul Dauncey1 Tech Board: DAQ/Online Status Paul Dauncey Imperial College London.
Independent front-end read out subsystems for 17 detectors in three underground sites. All electronics modules of each subsystem are reside in one VME.
Understanding Data Acquisition System for N- XYTER.
Claudia-Elisabeth Wulz Institute for High Energy Physics Vienna Level-1 Trigger Menu Working Group CERN, 9 November 2000 Global Trigger Overview.
ICARUS General Trigger Design Contributions from: M.Della Pietra, A.Di Cicco, P.Di Meo, G.Fiorillo, P.Parascandolo, R.Santorelli, P.Trattino B.Baboussinov,
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
Using Reactor Anti-Neutrinos to Measure sin 2 2θ 13 Jonathan Link Columbia University Fermilab Long Range Planning Committee, Neutrino Session November.
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
21-Aug-06DoE Site Review / Harvard(1) Front End Electronics for the NOvA Neutrino Detector John Oliver Long baseline neutrino experiment Fermilab (Chicago)
1 Test on RPC Veto Detector Model —— Anticoincidence Detector for Daya Bay Neutrino Exp. Speaker: Jiawen Zhang 5 June 2006.
06/09/2011TIPP Introduction Observational study of supernova explosion (SN) is important for understanding the mechanism of SN in detail. – Observation.
Front-end readout study for SuperKEKB IGARASHI Youichi.
PHENO 2010 Christopher White, IIT 1 The Daya Bay Reactor Antineutrino Experiment Christopher White 1.
Dec.11, 2008 ECL parallel session, Super B1 Results of the run with the new electronics A.Kuzmin, Yu.Usov, V.Shebalin, B.Shwartz 1.New electronics configuration.
1 水质契仑科夫探测器中的中子识别 张海兵 清华大学 , 南京 First Study of Neutron Tagging with a Water Cherenkov Detector.
DAQ/Trigger System proposal for the Angra Neutrino Detector Herman Lima Jr (18 May 2006) Centro Brasileiro de Pesquisas Físicas.
January 31, MICE DAQ MICE and ISIS Introduction MICE Detector Front End Electronics Software and MICE DAQ Architecture MICE Triggers Status and Schedule.
12GeV Trigger Workshop Christopher Newport University 8 July 2009 R. Chris Cuevas Welcome! Workshop goals: 1.Review  Trigger requirements  Present hardware.
LHCb front-end electronics and its interface to the DAQ.
,,,,, The Daya Bay Reactor Neutrino Experiment Liangjian Wen On behalf of the Daya Bay Collaboration Institute of High Energy Physics Daya Bay Detectors.
Results from RENO Soo-Bong Kim (KNRC, Seoul National University) “17 th Lomosonov Conference on Elementary Particle Physics” Moscow. Russia, Aug ,
All Experimenters MeetingDmitri Denisov Week of July 7 to July 15 Summary  Delivered luminosity and operating efficiency u Delivered: 1.4pb -1 u Recorded:
The Daya Bay Reactor Neutrino Experiment R. D. McKeown Caltech On Behalf of the Daya Bay Collaboration CIPANP 2009.
Jefferson Laboratory Hall A SuperBigBite Spectrometer Data Acquisition System Alexandre Camsonne APS DNP 2013 October 24 th 2013 Hall A Jefferson Laboratory.
Karsten Heeger Beijing, January 18, 2003 Design Considerations for a  13 Reactor Neutrino Experiment with Multiple Detectors Karsten M. Heeger Lawrence.
DAQ Subsystem Christopher Crawford University of Kentucky Robert Grzywacz University of Tennessee April DoE, Germantown MD.
Disk Towards a conceptual design M. de Jong  Introduction  Design considerations  Design concepts  Summary.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
5 June 2002DAQ System Engineering Requirements 1 DAQ System Requirements DOM Main Board Engineering Requirements Review David Nygren.
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
1 Electronics Status Trigger and DAQ run successfully in RUN2006 for the first time Trigger communication to DRS boards via trigger bus Trigger firmware.
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
11 October 2002Paul Dauncey - CDR Introduction1 CDR Introduction and Overview Paul Dauncey Imperial College London.
APEX DAQ rate capability April 19 th 2015 Alexandre Camsonne.
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
TELL1 readout in RICH test: status report Gianluca Lamanna on behalf of TDAQ Pisa Group (B.Angelucci, C.Avanzini, G.Collazuol, S.Galeotti, G.L., G.Magazzu’,
A Brand new neutrino detector 「 SciBar 」 (2) Y. Takubo (Osaka) - Readout Electronics - Introduction Readout electronics Cosmic ray trigger modules Conclusion.
A. Tsirigotis Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Reconstruction, Background Rejection Tools.
Evelyn Thomson Ohio State University Page 1 XFT Status CDF Trigger Workshop, 17 August 2000 l XFT Hardware status l XFT Integration tests at B0, including:
1 Detector of the reactor AntiNeutrino based on Solid-state plastic Scintillator (DANSS) M.Danilov M.Danilov Representing the DANSS Collaboration (ITEP.
1 Work report ( ) Haoqi Lu IHEP Neutrino group
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
Event Display The DAQ system architecture The NOA Data Acquisition system with the full 14 kt far detector P.F. Ding, D. Kalra, A. Norman and J. Tripathi.
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
SVD FADC Status Markus Friedl (HEPHY Vienna) Wetzlar SVD-PXD Meeting, 5 February 2013.
IRFU The ANTARES Data Acquisition System S. Anvar, F. Druillole, H. Le Provost, F. Louis, B. Vallage (CEA) ACTAR Workshop, 2008 June 10.
Development of new DAQ system at Super-Kamiokande for nearby supernova A.Orii T. Tomura, K. Okumura, M. Shiozawa, M. Nakahata, S. Nakayama, Y. Hayato for.
 13 Readout Electronics A First Look 28-Jan-2004.
EPS HEP 2007 Manchester -- Thilo Pauly July The ATLAS Level-1 Trigger Overview and Status Report including Cosmic-Ray Commissioning Thilo.
DAQ ACQUISITION FOR THE dE/dX DETECTOR
Gu Minhao, DAQ group Experimental Center of IHEP February 2011
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
ALICE – First paper.
PADME L0 Trigger Processor
A First Look J. Pilcher 12-Mar-2004
Sergey Abrahamyan Yerevan Physics Institute APEX collaboration
DAQ Architecture Design of Daya Bay Reactor Neutrino Experiment
Example of DAQ Trigger issues for the SoLID experiment
Presentation transcript:

7 th 高能物理学会大会, 李小男, 高能物理研究所 1 大亚湾反应堆中微子实验 触发和数据获取系统 李小男, IHEP On behalf of 触发 : 清华大学 DAQ:IHEP

7 th 高能物理学会大会, 李小男, 高能物理研究所 2 sin 2 2   Measurement at reactors νeνe νeνe νeνe νeνe νeνe νeνe Distance (L) Probability ν e meters Unoscillated flux observed here Well understood, isotropic source of electron anti-neutrinos Oscillations observed as a deficit of ν e sin 2 2θ 13 νeνe νeνe νeνe νeνe νeνe νeνe Detectors are located underground to shield against cosmic rays. πE ν /2Δm 2 13

7 th 高能物理学会大会, 李小男, 高能物理研究所 3 Dayabay Reactor Neutrino Experiment 900 m 292 m 465 m 810 m 607 m Total Tunnel length ~ 3000 m

7 th 高能物理学会大会, 李小男, 高能物理研究所 4 Detecting  e Inverse  -decay in 0.1% Gd-doped liquid scintillator Antineutrino signal, algorithm implemented in offline or on online computer farm –Time coincidence –Energy correlated

7 th 高能物理学会大会, 李小男, 高能物理研究所 5 Requirements of readout electronics Readout board designed for all detector systems except RPC. Neutrino detector: –Charge measurement Dynamic range for each PMT: 0 PE PE –50 p.e is the maximum for a neutrino event –~500 p.e. for through-going muons resolution: 1 p.e, 400 p.e. Noise < 0.1 p.e. Digitization time(mainly shaping time) < 1  s –Timing measurement: To determine event time and event vertex dynamic range: 0 ~ 500 ns resolution: < 500 ps Muon detector: –Water pool: Same requirements as neutrino detector –Water Tracker: Hit and/or charge RPC: BESIII electronics

7 th 高能物理学会大会, 李小男, 高能物理研究所 6 Readout board diagram On board calibration circuit 16 Channel inputs TDC algorithm: Gray counters

7 th 高能物理学会大会, 李小男, 高能物理研究所 7 Trigger requirement Good background rejection power rate can go to ~KHz rate limited by DAQ capabilities (hopefully < 10 MB/s/module) Low threshold ( T+3  < 1MeV ) –Record prompt positron signals and delayed signals from the neutrino interactions. –Record the background to enable background analysis. High and well known efficiency Flexibility (to fight backgrounds), same trigger board for different detector. –FPGA –Daughter card Reliability (to reduce systematic errors) Independency, Separate trigger for each of neutrino module, and each of muon detector, water pool, water cenrenkov module and RPC. Redundancy (to measure the trigger efficiency) Provide a system clock

7 th 高能物理学会大会, 李小男, 高能物理研究所 8 Algorithms Central trigger: OR of the following two –Energy: total charge > 15 PE –Multiplicity: > 15 PMT fired Veto trigger: OR of the following two –RPC: > two hits in any plane (Scin. > 1 hits ) –Water: > few PMT fired Prompt and delayed sub-event triggered and recorded independently, time correlation offline Central and veto events triggered and recorded independently, time correlation offline No dead-time induced. Trigger rate is limited by electronics recover time and by DAQ bandwidth. Trigger type: –Primary physics trigger –LED –Radioactive source –Periodic trigger –Muon trigger

7 th 高能物理学会大会, 李小男, 高能物理研究所 9 PMT dark current rate PMT max. number: 200 PMT dark current rate:50k Integration windows:100ns

7 th 高能物理学会大会, 李小男, 高能物理研究所 10 Trigger rate DetectorEvent Trigger Rate Occ.Ch size (bits) DBLAFar  e Module Cosmic-μ36x222x21.2x4 100%224*64 Rad.50x2 50x4 PoolCosmic-μ %340(252)*64 TrackerCosmic-μ %8*64 RPC Cosmic-μ %7650(5040)*1 Rad.&Noise Site totalskB/s

7 th 高能物理学会大会, 李小男, 高能物理研究所 11 Trigger board One board per module Same hardware design for central and veto board Each trigger board can handle up to 256 PMTs Decision time: → Readout event buffer depth –Multiplicity trigger based on FPGA: ~ 200 ns –Energy trigger based on total charge : ~ 300 ns ? System clock + Local clock

7 th 高能物理学会大会, 李小男, 高能物理研究所 12 Trigger scheme

7 th 高能物理学会大会, 李小男, 高能物理研究所 13 Timing Each site has a master clock to synchronize the veto and central modules A GPS time/1 PPS/10 kHz reference will be delivered to each site for an absolute time stamp If GPS can not be used, we can use a local clock, a problem for Supernova studies. Precision: GPS time ~ 100 ns. Time-stamp precision level 25ns. Each trigger board have a local clock for self trigger and testing. Mid-site DYBLA FAR

7 th 高能物理学会大会, 李小男, 高能物理研究所 14 DAQ block diagram

7 th 高能物理学会大会, 李小男, 高能物理研究所 15 Data acquisition & online control VME based front-end hardware, Motorola PowerPC controller RT-Linux RTOS: TimeSys Co. LinuxLink Back-end Linux PC. Software based on BES-III/Atlas Framework Each detector system and each neutrino module at each site is readout (trigger) independently. –8 antineutrino streams and 9 muon streams. Event reassembled using timestamp offline. –One neutrino module → One VME crate. –Water pool → One VME crate (near), Two VME crates (far). –Water Cerenkov Module system: TWO VME crates. Communication: –Copper between trigger-FEE –Twisted cable between PowerPC and readout computer –Optical between site-site/site-surface.

7 th 高能物理学会大会, 李小男, 高能物理研究所 16 Data acquisition and online control Online control –Local online control in each detector hall: each detector system has its own online control. Detector debugging and commissioning in parallel. –Global online control in surface room: Operate and monitor all detector system. Data storage: –Data throughout: 1.5MB/s. → 0.4TB/day (safety factor of 3). –Local tapes –Local disks Data transfer: –Tapes from DYB to IHEP or to Shenzhen Uni. –A data link from Shenzhen Uni. to IHEP via network can be discussed A data center at IHEP to be established. Raw data or processed data tapes will be copied and shipped to other data centers in the world, or distributed via GRID.

7 th 高能物理学会大会, 李小男, 高能物理研究所 17 One Readout VME crate

7 th 高能物理学会大会, 李小男, 高能物理研究所 18 Status Simple version of readout boards and trigger board are successfully running on the prototype. We are working on the 2nd version of readout board and trigger board We finished conceptual design of DAQ DAQ group is formed and begin to work on the project