Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Slides:



Advertisements
Similar presentations
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Advertisements

From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Quantum impurity problems (QIP) and numerical renormalization group (NRG): quick introduction Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia June.
Spectral functions in NRG Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Youjin Deng Univ. of Sci. & Tech. of China (USTC) Adjunct: Umass, Amherst Diagrammatic Monte Carlo Method for the Fermi Hubbard Model Boris Svistunov UMass.
Spin Incoherent Quantum Wires Leon Balents Greg Fiete Karyn Le Hur Frontiers of Science within Nanotechnology, BU August 2005.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Correlations in quantum dots: How far can analytics go? ♥ Slava Kashcheyevs Amnon Aharony Ora Entin-Wohlman Phys.Rev.B 73, (2006) PhD seminar on.
Implementing a NRG code, handling second quantization expressions, symmetries, parallelization issues Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
Conductance of a spin-1 QD: two-stage Kondo effect Anna Posazhennikova Institut für Theoretische Festkörperphysik, Uni Karlsruhe, Germany Les Houches,
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Mesoscopic Anisotropic Magnetoconductance Fluctuations in Ferromagnets Shaffique Adam Cornell University PiTP/Les Houches Summer School on Quantum Magnetism,
Extended Dynamical Mean Field. Metal-insulator transition el-el correlations not important:  band insulator: the lowest conduction band is fullthe lowest.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
Functional renormalization – concepts and prospects.
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
Diagrammatic Theory of Strongly Correlated Electron Systems.
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
Introduction to the Kondo Effect in Mesoscopic Systems.
Theory of the Quantum Mirage*
Non equilibrium noise as a probe of the Kondo effect in mesoscopic wires Eran Lebanon Rutgers University with Piers Coleman arXiv: cond-mat/ DOE.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
First Principles Investigations of Plutonium Americium and their Mixtures using Dynamical Mean Field Theory Washington February 5-8 (2007). Gabriel.Kotliar.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Correlations in quantum dots: How far can analytics go?
Transport properties: conductance and thermopower
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Tutorial 4: Kondo peak splitting in magnetic field, transport integrals, conductance and thermopower Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Dynamic response of a mesoscopic capacitor in the presence of strong electron interactions Yuji Hamamoto*, Thibaut Jonckheere, Takeo Kato*, Thierry Martin.
Quantum transport theory - analyzing higher order correlation effects by symbolic computation - the development of SymGF PhD Thesis Defense Feng, Zimin.
New Jersey Institute of Technology Computational Design of Strongly Correlated Materials Sergej Savrasov Supported by NSF ITR (NJIT), (Rutgers)
Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, Jožef Stefan Institute, Ljubljana, Slovenia.
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Lanczos approach using out-of-core memory for eigenvalues and diagonal of inverse problems Pierre Carrier, Yousef Saad, James Freericks, Ehsan Khatami,
Drude weight and optical conductivity of doped graphene Giovanni Vignale, University of Missouri-Columbia, DMR The frequency of long wavelength.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Adiabatic quantum pumping in nanoscale electronic devices Adiabatic quantum pumping in nanoscale electronic devices Huan-Qiang Zhou, Sam Young Cho, Urban.
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
Discretization, z-averaging, thermodynamics, flow diagrams Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
A. Ramšak* J. Mravlje R. Žitko J. Bonča* T. Rejec* The Kondo effect in multiple quantum dot systems Department of Physics.
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
Transport Measurement of Andreev Bound States in a Kondo-Correlated Quantum Dot Experiment: B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-H. Bae, N. Kim Theory:
Flat Band Nanostructures Vito Scarola
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Igor Lukyanchuk Amiens University
Kondo Effect Ljubljana, Author: Lara Ulčakar
Review on quantum criticality in metals and beyond
Quantum entanglement, Kondo effect, and electronic transport in
Robert Konik, Brookhaven National Laboratory Hubert Saleur,
Conductance of nanosystems with interaction
Conductance through coupled quantum dots
Conductance through coupled quantum dots
Kondo effect Him Hoang
Dynamical mean field theory: In practice
Spin thermopower in the overscreened Kondo model
第43回応用物理学科セミナー 日時: 11月21日(水) 16:10 – 17:10 場所:葛飾キャンパス研究棟8F第1セミナー室
Presentation transcript:

Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, J. Stefan Institute, Ljubljana, Slovenia

Quantum transport theory –prof. Janez Bonča 1,2 –prof. Anton Ramšak 1,2 –Tomaž Rejec 1,2 –Jernej Mravlje 1 Experimental surface science and STM –prof. Albert Prodan 1 –prof. Igor Muševič 1,2 –Erik Zupanič 1 –Herman van Midden 1 –Ivan Kvasić 1 1 J. Stefan Institute, Ljubljana, Slovenia 2 Faculty of Mathematics and Physics, Uni. of Ljubljana, Ljubljana, Slovenia

Outline Impurity physics Numerical renormalization group SNEG – Mathematica package for performing symbolic calculations with second quantization operator expressions NRG Ljubljana –project goals –features –some words about the implementation Impurity clusters –N parallel quantum dots (N=1...5, one channel)

Classical impurity

Quantum impurity This is Kondo model!

Nonperturbative behaviour The perturbation theory fails for arbitrarily small J !

Screening of the magnetic moment Kondo effect!

“Asymptotic freedom”... T >> T K

... and “infrared slavery” T << T K Analogy: T K   QCD

Nonperturbative scattering

Why are quantum impurity problems important? Quantum systems in interaction with the environment (decoherence) Magnetic impurities in metals (Kondo effect) Electrons trapped in nanostructures (transport phenomena) Effective models in dynamical mean-field theory (DMFT) of strongly-correlated materials

Renormalization group ?

Many energy scales are locally coupled (K. G. Wilson, 1975) Cascade effect

Numerical renormalization group (NRG)  -n/2

Iterative diagonalization Recursion relation:

Tools: SNEG and NRG Ljubljana Add-on package for the computer algebra system Mathematica for performing calculations involving non-commuting operators Efficient general purpose numerical renormalization group code flexible and adaptable highly optimized (partially parallelized) easy to use Both are freely available under the GPL licence:

Package SNEG , U t

SNEG - features fermionic (Majorana, Dirac) and bosonic operators, Grassman numbers basis construction (well defined number and spin (Q,S), isospin and spin (I,S), etc.) symbolic sums over dummy indexes (k,  ) Wick’s theorem (with either empty band or Fermi sea vacuum states) Dirac’s bra and ket notation Simplifications using Baker-Campbell- Hausdorff and Mendaš-Milutinović formula

SNEG - applications exact diagonalization of small clusters perturbation theory to high order high-temperature series expansion evaluation of (anti-)commutators of complex expressions NRG –derivation of coefficients required in the NRG iteration –problem setup

“NRG Ljubljana” - goals Flexibility (very few hard-coded limits, adaptability) Implementation using modern high-level programming paradigms (functional programming in Mathematica, object oriented programming in C++)  short and maintainable code Efficiency (LAPACK routines for diagonalization) Free availability

Package “NRG Ljubljana” open source,GPL

Definition of a quantum impurity problem in “NRG Ljubljana” f 0,L f 0,R ab t Himp = eps (number[a[]]+number[b[]])+ U/2 (pow[number[a[]]-1,2]+pow[number[b[]]-1,2]) Hab = t hop[a[],b[]] Hc = Sqrt[Gamma] (hop[a[],f[L]] + hop[b[],f[R]]) + J spinspin[a[],b[]]+ V chargecharge[a[],b[]]

Definition of a quantum impurity problem in “NRG Ljubljana” f 0,L f 0,R ab t Himp = epsa number[a[]] + epsb number[b[]] + U/2 (pow[number[a[]]-1,2]+pow[number[b[]]-1,2]) Hab = t hop[a[],b[]] Hc = Sqrt[Gamma] (hop[a[],f[L]] + hop[b[],f[R]])

Computable quantities Finite-site excitation spectra (flow diagrams) Thermodynamics: magnetic and charge susceptibility, entropy, heat capacity Correlations: spin-spin correlations, charge fluctuations,... spinspin[a[],b[]] number[d[]] pow[number[d[]], 2] Dynamics: spectral functions, dynamical magnetic and charge susceptibility, other response functions

Sample input file [param] model=SIAM U=1.0 Gamma=0.04 Lambda=3 Nmax=40 keepenergy=10.0 keep=2000 ops=q_d q_d^2 A_d Model and parameters NRG iteration parameters Computed quantities Occupancy Charge fluctuations Spectral function

W. G. van der Wiel, S. de Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, L. P. Kouwenhoven, Science 289, 2105 (2000) Conduction as a function of gate voltage for decreasing temperature Kondo effect in quantum dots

Scattering theory “Landauer formula” See, for example, M. Pustilnik, L. I. Glazman, PRL 87, (2001).

Keldysh approach One impurity: Y. Meir, N. S. Wingreen. PRL 68, 2512 (1992).

Conductance of a quantum dot (SIAM) Computed using NRG.

Systems of coupled quantum dots L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett. 97, (2006). M. Korkusinski, I. P. Gimenez, P. Hawrylak, L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, Phys. Rev. B 75, (2007). triple-dot device

Parallel quantum dots and the N-impurity Anderson model R. Žitko, J. Bonča: Multi-impurity Anderson model for quantum dots coupled in parallel, Phys. Rev. B 74, (2006) R. Žitko, J. Bonča: Quantum phase transitions in systems of parallel quantum dots, Phys. Rev. B 76,.. (2007). V k = e ikL v k V k ≡V (L  0)

Conduction-band mediated inter-impurity exchange interaction RKKY exchangeSuper-exchange

Effective single impurity S=N/2 Kondo model The RKKY interaction is ferromagnetic, J RKKY >0: S is the collective S=N/2 spin operator of the coupled impurities, S=P(  S i )P Effective model (T<J RKKY ): J RKKY  0.62 U(  0 J K ) 2 4 th order perturbation in V k

Free orbital regime (FO) Local moment regime (LM) Ferro- magnetically frozen (FF) Strong- coupling regime (SC)

The spin-N/2 Kondo effect Full line: NRGSymbols: Bethe Ansatz

Conductance as a function of the gate voltage

Kondo modelKondo model + potential scattering

S=1 Kondo model S=1 Kondo model + potential scattering S=1/2 Kondo model + strong potential scattering

Gate-voltage controlled spin filtering

Spectral functions

Kosterlitz-Thouless transition  1 =+ ,  2 =-  S=1 Kondo S=1/2 Kondo

Conclusions Impurity clusters can be systematically studied with ease using flexible NRG codes Very rich physics: various Kondo regimes, quantum phase transitions, etc. But to what extent can these effects be experimentally observed? Towards more realistic models: better description of inter-dot interactions, role of QD shape and distances.