Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.

Slides:



Advertisements
Similar presentations
1 Top Production Processes at Hadron Colliders By Paul Mellor.
Advertisements

Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen; & with Krzysztof Kajda & Janusz Gluza.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture IV.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture V.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
Structure of Amplitudes in Gravity III Symmetries of Loop and Tree amplitudes, No- Triangle Property, Gravity amplitudes from String Theory Playing with.
Antonio RagoUniversità di Milano Techniques for automated lattice Feynman diagram calculations 1 Antonio RagoUniversità di Milano Techniques for automated.
Structure of Amplitudes in Gravity II Unitarity cuts, Loops, Inherited properties from Trees, Symmetries Playing with Gravity - 24 th Nordic Meeting Gronningen.
Recurrence, Unitarity and Twistors including work with I. Bena, Z. Bern, V. Del Duca, D. Dunbar, L. Dixon, D. Forde, P. Mastrolia, R. Roiban.
Results in N=8 Supergravity Emil Bjerrum-Bohr HP 2 Zurich 9/9/06 Harald Ita Warren Perkins Dave Dunbar, Swansea University hep-th/0609??? Kasper Risager.
Beyond Feynman Diagrams Lecture 3 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Unitarity and Factorisation in Quantum Field Theory Zurich Zurich 2008 David Dunbar, Swansea University, Wales, UK VERSUS Unitarity and Factorisation in.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture III.
SQG4 - Perturbative and Non-Perturbative Aspects of String Theory and Supergravity Marcel Grossmann -- Paris Niels Emil Jannik Bjerrum-Bohr Niels Bohr.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
The Harmonic Oscillator of One-loop Calculations Peter Uwer SFB meeting, – , Karlsruhe Work done in collaboration with Simon Badger.
The Dipole-Antenna approach to Shower Monte Carlo's W. Giele, HP2 workshop, ETH Zurich, 09/08/06 Introduction Color ordering and Antenna factorization.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, III Fall Term 2004.
Twistors and Perturbative QCD Yosuke Imamura The Univ. of Tokyo String Theory and Quantum Field Theory Aug.19-23, 2005 at YITP tree-level Yang-Mills 1.
Twistor Inspired techniques in Perturbative Gauge Theories including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
Recursive Approaches to QCD Matrix Elements including work with Z. Bern, S Bidder, E Bjerrum-Bohr, L. Dixon, H Ita, D Kosower W Perkins K. Risager RADCOR.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture II.
Evaluating Semi-Analytic NLO Cross-Sections Walter Giele LoopFest 2006 SLAC 06/21/06 Nigel Glover and W.G.: hep-ph/ Giulia Zanderighi, Nigel Glover.
Bootstrapping One-loop QCD Scattering Amplitudes Lance Dixon, SLAC Fermilab Theory Seminar June 8, 2006 Z. Bern, LD, D. Kosower, hep-th/ , hep-ph/ ,
1 On-Shell Methods in Perturbative QCD ICHEP 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/ hep-ph/
Darren Forde (SLAC & UCLA). NLO amplitudes using Feynman diagram techniques The limitations. “State of the art” results. New techniques required Unitarity.
MCFM and techniques for one-loop diagrams. R. Keith Ellis Fermilab Berkeley Workshop on Boson+Jets Production, March 2008.
A Calculational Formalism for One- Loop Integrals Introduction Goals Tensor Integrals as Building Blocks Numerical Evaluating of Tensor Integrals Outlook.
Twistors and Gauge Theory DESY Theory Workshop September 30 September 30, 2005.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, II Fall Term 2004.
Soft and Collinear Behaviour of Graviton Scattering Amplitudes David Dunbar, Swansea University.
Darren Forde (SLAC & UCLA) arXiv: (To appear this evening)
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture I.
Th.Diakonidis - ACAT2010 Jaipur, India1 Calculating one loop multileg processes A program for the case of In collaboration with B.Tausk ( T.Riemann & J.
The SAMPER project (Semi-numerical AMPlitude EvaluatoR) W. Giele, TeV4LHC, 20/10/05 Giulia Zanderighi, Keith Ellis and Walter Giele. hep-ph/ hep-ph/
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Status of Higher Order QCD Calculations Aude Gehrmann-De Ridder ICHEP 2010Status of Higher Order QCD Calculations.
S.A. YostLCWS08 Chicago Nov. 17, Differential Reduction Algorithms for the Laurent Expansion of Hypergeometric Functions for Feynman Diagram Calculation.
Loop Calculations of Amplitudes with Many Legs DESY DESY 2007 David Dunbar, Swansea University, Wales, UK.
From Twistors to Gauge-Theory Amplitudes WHEPP, Bhubaneswar, India January 7 January 7, 2006.
Peter Uwer *) Universität Karlsruhe *) Financed through Heisenberg fellowship and SFB-TR09 LoopFest VII May, 2008, Buffalo NLO QCD corrections to WW +
MadGraph/MadEvent Automatically Calculate 1-Loop Cross Sections !
Twistor Inspired techniques in Perturbative Gauge Theories-II including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
NLO Vector+Jets Predictions with B LACK H AT & SHERPA David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the B LACK H AT Collaboration.
The Importance of the TeV Scale Sally Dawson Lecture 3 FNAL LHC Workshop, 2006.
On-Shell Methods in QCD: First Digits for BlackHat David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the BlackHat Collaboration.
W + n jet production at NLO Lance Dixon (SLAC) representing the BlackHat Collaboration C. Berger, Z. Bern, L.D., F. Febres Cordero, D. Forde, T. Gleisberg,
V +Jets at Next-to-Leading Order with BlackHat David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the BlackHat Collaboration Carola.
On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.
David Farhi (Harvard University) Work in progress with Ilya Feige, Marat Freytsis, Matthew Schwartz SCET Workshop, 3/27/2014.
Theory perspectives Discovery Center N. Emil J. Bjerrum-Bohr.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
June 19, 2007 Manchester1 High-Energy Electroweak Physics Parallel Session Zoltan Kunszt, ETH, Zurich Unitarity Cuts and Reduction of Master Integrals.
Precise prediction for ILC experiment HAN, Liang Univ. of Science &Technology of China ( on behalf of U.S.T.C Hep Phenomenology Group )
Darren Forde (SLAC & UCLA) arXiv: [hep-ph], hep-ph/ , hep-ph/ In collaboration with Carola Berger, Zvi Bern, Lance Dixon & David.
Complete QCD Amplitudes: Part II of QCD On-Shell Recursion Relations
Unitarity Methods in Quantum Field Theory
On-Shell Meets Observation or, the Rubber Meets the Road
Evaluating Semi-Analytic NLO Cross-Sections
Modern Methods for Loop Calculations of Amplitudes with Many Legs
Analytic Results for Two-Loop Yang-Mills
Computation of Multi-Jet QCD Amplitudes at NLO
Y.Kitadono (Hiroshima ),
Presentation transcript:

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität zu Berlin In collaboration with Simon Badger and Peter Uwer DESY Theory Workshop, Hamburg

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Precision predictions for the LHC require multi-leg parton amplitudes Automation at tree-level solved, e.g. MadGraph, HELAC,… Important goal: Automation of NLO QCD-amplitudes with many legs Current attempts: FeynArts, GOLEM/Samurai HELAC-NLO, BlackHat, Rocket… NGluon: ordered one-loop gluon amplitudes with arbitrarily many legs, publicly available at Motivation Computer Physics Communications 182 (2011), 1674 arXiv:

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Colour Management Colour-ordered Feynmanrules (only gluonic vertices shown): [cf. Tasi lectures from Lance Dixon 1995] subset of diagrams with fixed order of external particles far less diagrams no crossing lines gauge invariant smaller building blocks efficient recursive calculation : colour-ordered amplitudes : primitive amplitudes [Berends, Giele 1987] [Bern, Dixon, Kosower 1993]

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Full-colour Amplitude Sum over non-cyclic permutations colour basis: traces of generators of SU(N) with Tr[ T a T b ] =  ab colour decomposed ordered tree amplitudes notation: At one-loop: Colour decomposed one-loop amplitudes are not ordered but can be expressed as special linear combinations of ordered one-loop amplitudes (primitive amplitudes). At tree-level (gluonic example):

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY NGluon: Fully automated numerical evaluation of primitive amplitudes for the pure gluonic case with arbitrarily many external legs. Fully automated numerical evaluation of primitive amplitudes for massless QCD with arbitrarily many external legs. Current extension:

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Scalar Integral Basis Decomposition of an arbitrary one-loop amplitude: boxestrianglesbubblestadpoles No tadpoles in massless theories [Passarino,Veltman1979] Topology: computation of one-loop amplitudes = determination of integral coefficients

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Integrand Properties [Ossola,Papadopoulos,Pittau2007] [Ellis, Giele, Kunszt 2008] Numerators:loop-momentum independent part + spurious terms Loop-momentum independent part is the desired integral coefficient Focus on the integrand of the amplitudes Spurious terms:loop-momentum tensors which vanish after integration

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Box Example Integrand : Tensor structure of the box part well known: Compute for two different system of equations determine How do we get ?

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Projecting out the Numerators The loop-momentum must be constructed such that the propagators vanish: on-shell cut condition. Product of four tree amplitudes multiply with set loop momentum on-shell:

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Extraction of the Coefficients Evaluate the integrand for different loop-momenta „product of tree amplitudes“ “system of equations” Disentangle integral coefficients from spurious terms using information about the tensor structure Same technique extended to the rational part with an effective mass to incorporate the d-dimensional information. [Bern, Dixon, Dunbar, Kosower 1997] [Badger 2009]

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY On-shell: loop-momentum parametrisation with van Neerven-Vermaseren basis Tree amplitudes: recursion techniques Disentanglement: Discrete Fourier Projection (DFP) [van Neerven, Vermaseren 1984] [Berends, Giele 1987] numerical C++ implementation of D-dimensional unitarity Loop integrals: FF, QCDLoop [van Oldenborgh 1990; Ellis, Zanderighi 2008] Extended precision: qd-package [Hida, Li, Bailey 2008] Implementation

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Tree Amplitude Calculation Very efficient calculation: t < 0.3 seconds for 100 gluons

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Checks for primitive amplitudes Numerical cross checks with results from [Giele, Kunszt, Melnikov arXiv: ] [Giele, Zanderighi arXiv: ] [van Hameren arXiv: ] Analytic cross checks Scaling test Known structure of IR- and UV-singularities [Bern, Dixon, Kosower arXiv:hep-ph/ ] [Bern, Dixon, Kosower arXiv:hep-ph/ ] [Berger, Bern, Dixon, Forde, Kosower arXiv:hep-ph/ ]

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY /ε 2 -pole, 1/ε-pole and finite part Accuracy: logarithm of the relative uncertainty = number of valid digits

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Reliability of NGluon Fraction of events with an accuracy above -3 for MHV amplitudes:

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Analytic checks: qq+ngluon

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Asymptotic Time Scaling Constructive Berends-Giele implementation: Cache-improved partial amplitudes: Tree-Amplitudes: Integral Coefficients: k = 5 for the pentagons k = 4 for the boxes k = 3 for the triangles k = 2 for the bubbles NGluon: Expected scaling: Observed scaling for Topology:

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Runtime Measurements [Giele, Zanderighi] [Badger, Uwer, BB] for large n:

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Full NLO squared Matrix Elements Full cross-checks for colour-helicity summed di-jet completed primitive amplitudefull colour amplitudecolour-helicity summed squared matrix elements [Kunszt, Soper 1992] [Ellis, Sexton 1986] 2->3: match up with the full colour epsilon poles 2->4: correct 6 gluon full colour-helicity, most quark channels finished We do have the colour summed results. We do not have the phenomenology yet.

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Colour-helicity summed 4pt and 5pt Full 5pt amplitudes appr. one second evaluation time per phasespace point Good numerical accuracy, stability increases with the number of quarks

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Colour-helicity summed 6-pt Never more then 1% need re-evaluation Main bottleneck expected in the subtraction terms

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Conclusion and Outlook NGluon is a fully numerical program to calculate one-loop primitive amplitudes for pure gluonic case Extension to the massless quark case completed Various tests for numerical accuracy and speed Reliable for up to 14 gluons in double precision Colour sums under control Conclusion Outlook First phenomenological calculations

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Backup slides

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Recursive Tree-level Techniques   = + External wave functions, Polarization vectors color ordered vertices [Berends, Giele 1987] off shell leg

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY parton currents 2 parton currents 3 parton currents Bottom-up Approach calculation loop-momentum external legs 1.Cache all possible off-shell currents that involve external legs 2.Connect loop-currents with external currents

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Rational Part Supersymmetric decomposition of gluon amplitudes: The rational terms of the one-loop gluon amplitude are the same as those coming from contributions with a scalar loop. [Bern, Dixon, Dunbar, Kosower 1994] Absorb epsilon dependence in scalar mass: [Bern, Dixon, Dunbar, Kosower 1997]

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Rational Part Integrand for the rational part is a polynomial in the scalar mass. Disentanglement of the massive polynomial coefficients Expand integral basis in higher integer dimension and take ε → 0 limit Additional hidden pentagon contributions More complicated subtraction procedure Use the same four dimensional techniques [Giele, Kunszt, Melnikov 2008] [Badger 2009]

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Triangles multiply with go on-shell: Product of three tree amplitudes – box part

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Boxes versus Triangles Example with four external legs: One box with a quadruple cut: Four boxes with triple cuts: Boxsubtraction: Remove all boxes with triple cuts to get the pure triangle part Four triangles with triple cuts:

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Discrete Fourier Projection I Integrand is a complex valued power series in t with finite number of power terms: # of power terms = # of spurious terms + 1 Cut-constructible triangles: # of power terms = 2p+1 = 7 for p=3 multiply by sum over m

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY Discrete Fourier Projection II Mathematics behind the Fourier Projection: Complete and orthonormal function basis Uses Z(N) as discrete subgroup of U(1) Perform n independent projections for n free parameters (2 in the cut-constructible bubble case)

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY On-shell conditions in 4 Dimensions Box case: 4 equations: loop momentum entirely “frozen” Triangle case: 3 equations: loop-momentum and integrand depend on one free parameter t: Bubble case: 2 equations: two free parameters t and y:

Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY One-loop Methods n-point amplitude = sum of Feynman diagrams sum of scalar one-loop integrals [Passarino,Veltman1979] computation of one-loop amplitudes = determination of the coefficients are rational functions of kinematical invariants, in general d-dimensional.