« Data assimilation in isentropic coordinates » Which Accuracy can be achieved using an high resolution transport model ? F. FIERLI (1,2), A. HAUCHECORNE.

Slides:



Advertisements
Similar presentations
Variational data assimilation and forecast error statistics
Advertisements

ECMWF flow dependent workshop, June Slide 1 of 14. A regime-dependent balanced control variable based on potential vorticity Ross Bannister, Data.
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
OSE meeting GODAE, Toulouse 4-5 June 2009 Interest of assimilating future Sea Surface Salinity measurements.
Recent developments and perspectives in meteorological data assimilation Jean Pailleux (Météo-France /CNRM / Toulouse) Presentation.
ASSIMILATION OF SATELLITE TRACER DATA AND OPTIMISATION USING SELF-CONSISTENCY DIAGNOSTICS Saad Rharmili, Slimane Bekki, SA-IPSL, CNRS/UPMC.
Ozone Assimilation in the Chemistry Transport Model CHIMERE using an Ensemble Kalman Filter (EnKF) : Preliminary tests over the Ile de France region 2.
Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
1 アンサンブルカルマンフィルターによ る大気海洋結合モデルへのデータ同化 On-line estimation of observation error covariance for ensemble-based filters Genta Ueno The Institute of Statistical.
Institute for Climate and Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT 3D SLIMCAT Studies of Arctic Ozone Loss Wuhu Feng Acknowledgments: Martyn.
Operational Forecasting and Sensitivity-Based Data Assimilation Tools Dr. Brian Ancell Texas Tech Atmospheric Sciences.
Ibrahim Hoteit KAUST, CSIM, May 2010 Should we be using Data Assimilation to Combine Seismic Imaging and Reservoir Modeling? Earth Sciences and Engineering.
ECMWF CO 2 Data Assimilation at ECMWF Richard Engelen European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Many thanks to Phil Watts,
Data assimilation schemes in numerical weather forecasting and their link with ensemble forecasting Gérald Desroziers Météo-France, Toulouse, France.
Chemistry and Transport in the Lower Stratosphere Wuhu Feng 1, Martyn Chipperfield 1, Howard Roscoe 2 1. Institute for Atmospheric Science, School of the.
Page 1 ENVISAT Symposium – Salzburg - Austria 6-10 September 2004 GEO-MTR: A 2-Dimensional Multi Target Retrieval System for MIPAS/ENVISAT Observations.
The comparison of TransCom continuous experimental results at upper troposphere Takashi MAKI, Hidekazu MATSUEDA and TransCom Continuous modelers.
Methane inversion from satellite, TRANSCOM workshop, Jena, May 2003 Inverse modelling of methane sources and sinks using satellite observations Jan.
. Sensitivity Studies of Ozone Depletion with a 3D CTM Wuhu Feng 1, M.P. Chipperfield 1, S. Dhomse 1, L. Gunn 1, S. Davies 1, B. Monge-Sanz 1, V.L. Harvey.
TNO experience M. Schaap, R. Timmermans, H. Denier van der Gon, H. Eskes, D. Swart, P. Builtjes On the estimation of emissions from earth observation data.
Advanced data assimilation methods with evolving forecast error covariance Four-dimensional variational analysis (4D-Var) Shu-Chih Yang (with EK)
Predictability study using the Environment Canada Chemical Data Assimilation System Jean de Grandpré Yves J. Rochon Richard Ménard Air Quality Research.
Bill Campbell and Liz Satterfield Naval Research Laboratory, Monterey CA Presented at the AMS Annual Meeting 4-8 January 2015 Phoenix, AZ Accounting for.
S. Maksyutov, P.K. Patra and M. Ishizawa Jena; 13 May 2003 TDI experiment with NIES model and interannually varying NCEP winds.
A comparison of hybrid ensemble transform Kalman filter(ETKF)-3DVAR and ensemble square root filter (EnSRF) analysis schemes Xuguang Wang NOAA/ESRL/PSD,
Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model Polly Smith, Alison Fowler & Amos Lawless School of.
Lecture 11: Kalman Filters CS 344R: Robotics Benjamin Kuipers.
Ensemble Data Assimilation and Uncertainty Quantification Jeffrey Anderson, Alicia Karspeck, Tim Hoar, Nancy Collins, Kevin Raeder, Steve Yeager National.
A NICE PLACE 1 Chemical Modelling & Data Assimilation D. Fonteyn, S. Bonjean, S. Chabrillat, F. Daerden and Q. Errera Belgisch Instituut voor Ruimte –
EnKF Overview and Theory
Y. J. ORSOLINI Norwegian Institute for Air Research – NILU C. RANDALL LASP, University of Colorado, Boulder, USA G. MANNEY NASA Jet Propulsion.
1 ESTIMATING THE STATE OF LARGE SPATIOTEMPORALLY CHAOTIC SYSTEMS: WEATHER FORECASTING, ETC. Edward Ott University of Maryland Main Reference: E. OTT, B.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss High-resolution data assimilation in COSMO: Status and.
3DVAR Retrieval of 3D Moisture Field from Slant- path Water Vapor Observations of a High-resolution Hypothetical GPS Network Haixia Liu and Ming Xue Center.
MPO 674 Lecture 20 3/26/15. 3d-Var vs 4d-Var.
Potential benefits from data assimilation of carbon observations for modellers and observers - prerequisites and current state J. Segschneider, Max-Planck-Institute.
Stephanie Guedj Florence Rabier Vincent Guidard Benjamin Ménétrier Observation error estimation in a convective-scale NWP system.
Data assimilation and observing systems strategies Pierre Gauthier Data Assimilation and Satellite Meteorology Division Meteorological Service of Canada.
Tbilisi, GGSWBS'14 Optimization for inverse modelling Ketevan Kasradze 1 Hendrik Elbern 1,2
Simulation Experiments for GEO-CAPE Regional Air Quality GEO-CAPE Workshop September 22, 2009 Peter Zoogman, Daniel J. Jacob, Kelly Chance, Lin Zhang,
Overview of Techniques for Deriving Emission Inventories from Satellite Observations Frascati, November 2009 Bas Mijling Ronald van der A.
Assimilating chemical compound with a regional chemical model Chu-Chun Chang 1, Shu-Chih Yang 1, Mao-Chang Liang 2, ShuWei Hsu 1, Yu-Heng Tseng 3 and Ji-Sung.
Soil moisture generation at ECMWF Gisela Seuffert and Pedro Viterbo European Centre for Medium Range Weather Forecasts ELDAS Interim Data Co-ordination.
MODEL ERROR ESTIMATION EMPLOYING DATA ASSIMILATION METHODOLOGIES Dusanka Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University.
Maximum Likelihood Estimation and Simplified Kalman Filter tecniques for real time Data Assimilation.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
Bauru November 2004 Modelling interpretation of in situ H2O, CH4 and CO2 measured by  SDLA balloon borne instrument (SF2 and SF4 flights). N. Huret(1),G.
Deguillaume L., Beekmann M., Menut L., Derognat C.
NCAF Manchester July 2000 Graham Hesketh Information Engineering Group Rolls-Royce Strategic Research Centre.
Local Predictability of the Performance of an Ensemble Forecast System Liz Satterfield and Istvan Szunyogh Texas A&M University, College Station, TX Third.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
Data assimilation: a powerful tool for atmospheric chemistry Jeff Xia.
Colorado Center for Astrodynamics Research The University of Colorado 1 STATISTICAL ORBIT DETERMINATION Kalman Filter with Process Noise Gauss- Markov.
Page 1 Validation by Model Assimilation and/or Satellite Intercomparison - ESRIN 9–13 December D-VAR chemical data assimilation of ENVISAT chemical.
École Doctorale des Sciences de l'Environnement d’ Î le-de-France Année Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
École Doctorale des Sciences de l'Environnement d’Île-de-France Année Universitaire Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
École Doctorale des Sciences de l'Environnement d’ Î le-de-France Année Modélisation Numérique de l’Écoulement Atmosphérique et Assimilation.
Demonstration and Comparison of Sequential Approaches for Altimeter Data Assimilation in HYCOM A. Srinivasan, E. P. Chassignet, O. M. Smedstad, C. Thacker,
Progea S.r.l Bologna & SMHI CARPE DIEM 6TH PROJECT MEETING JUNE 24 HELSINKI WP 4: Assessment of Nwp Model Uncertainty Including Models Errors Dott.ssa.
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course Mar 2016.
Carbon Cycle Data Assimilation with a Variational Approach (“4-D Var”) David Baker CGD/TSS with Scott Doney, Dave Schimel, Britt Stephens, and Roger Dargaville.
ECMWF/EUMETSAT NWP-SAF Satellite data assimilation Training Course
Adjoint modeling and applications
Preliminary comparisons of GOMOS and MIPAS ozone products with Odin
AO 160 – OZVAL Validation of ENVISAT ozone products through assimilation in the MSDOL model: First results obtained with GOMOS Authors: B. Théodore and.
Assimilating Tropospheric Emission Spectrometer profiles in GEOS-Chem
Principles of the Global Positioning System Lecture 11
Sarah Dance DARC/University of Reading
Presentation transcript:

« Data assimilation in isentropic coordinates » Which Accuracy can be achieved using an high resolution transport model ? F. FIERLI (1,2), A. HAUCHECORNE (2), S. RHARMILI (2), S. BEKKI (2), F. LEFEVRE (2), M. SNELS (1) ISAC-CNR, Italy Service d’Aéronomie du CNRS, IPSL, France -Methodology -Assessment of the method on ENVISAT simulated data -Dynamical barriers -GOMOS data assimilation

Introduction Method for assimilating sequentially tracer measurements in isentropic chemistry-transport models MIMOSA High resolution isentropic advection model (Hauchecorne et al., 2001, Fierli et al. 2002) Additional information originating from the correlation between tracer and potential vorticity to be exploited in the assimilation algorithm  Use of isentropic coordinates The relatively low computational cost of the model makes it possible to run it at high resolutions and describe in details the distribution of long-lived chemical species.

Simplified Kalman Filter Sequential assimilation: whenever an observation becomes available, it is used to update the predicted value by the model which is run simultaneously Optimal interpolation is used to combine observations and outputs of the model; To reduce the Covariance Matrix (Menard, Khattatov, 2000): Horizontal and vertical forecast error covariances are independent The time evolution of diagonal elements of B B ii is calculated: B ii = a A ii (t-dt) + M A ii B ij is estimated from diagonal elements using f function  Inversion of HBH T + O + R is possible  Estimate of B is straightforward To simplify Observation operators  Observation errors spatially and temporally uncorrelated.

Growth of the Model error and representativeness B Diagonal elements : Observation errors covariance matrix  diagonal: r 0 and t 0 parameters to fit (representativeness defined by Lorenc et al., 1994)

Correlation Function B: Non diagonal elements Choice of f formulation: - Distance, PV, Equivalent Latitude, PV gradient - Exponential or gaussian F = correlation function Other 2 parameters to fit: d 0 and PV 0 (or Phi 0, DPV 0 )

Estimate of the assimilation parameters  2 criterion and Observation minus Forecast OmF RMS minimization used to determine assimilation parameters (as in Menard et al., 2000, Khattatov et al, 2001) OmF or innovation vector = y - H(x b )  2 = OmF 2 / (B ii 2 + r ii 2 + e)  e = Obs. error Blending of a priori information and the OmF estimate Conditions: -  2  n and does not show any time trend - OmF Minimum - Conditions are used to tune offline the correlation lengths and  2 the error parameters - Minimisation of (  2 –n) + OmF / H(x) on-line using the Powell method

Test Run: The quality of DA The impact of different data True Atmosphere (CTM Model) Mission Scenario of MIPAS and GOMOS data Simulated data MIMOSA Model Assimilation Assessment

MIMOSA Test Run: MIPAS, 2000 February 550 K isentropic level, 2.5 days of data The model is initialised with a Climatology (the worst !) The CTM model Mission Scenario Data Assimilation x a = x b +K(y - H(x b ))

MIPAS vs. GOMOS GOMOS MIPAS

MLS data 05/08/94 to 15/08/94, 550 K to 435 K level, MLS error < 10 % -  2 estimate -Ozone « collar » analysis Antarctic ozone collar How well dynamical barriers are reproduced ?

Estimate of the assimilation parameters  2 evolution Climatology from Fortuin-Kelder Initial error: 5 and 30 % Test using: Different formulations of correlation function Different Meteorological winds  Best if using PV and distance formulation  Slight difference using NCEP or ECMWF winds

Comparison with airborne O3 in-situ measurements

Flight

Flight

GOMOS 2002 Antarctic Vortex Split

* SMR-ODIN --- Free Model GOMOS Assimilation Diagnostic: RMS(Obs – Forecast) / Forecast  No bias Comparison with independant Data

Assimilation of MLS ozone, Fierli et al., 2002 Assimilation of GOMOS Assimilation of MIPAS data  in progress Extend to other chemical species  in progress H 2 O

Method (a lexical question) The so-called Kalman Filter x a = x b +K(y - H(x b )) K = BH T (HBH T + O + R) -1 Where: X a is the analysis (n-vector) X b is the background (forecast, first guess) B is the covariance matrix (n * n) H is the observational operator (n * m) y are the observations (m-vector) O is the observation operator (m * m) R is the significativity operator (m * m)

A = B – KHB B = Q + MAM T Where: A is the analysed covariance matrix B is the forecast Covariance matrix M is the Model operator Q is the Model error  Model should be re-run n*n times  HBH T + O + R should be inversed The dimensions of the system are too big