Sequence Information Content in Peptide MS/MS Spectra Karl R. Clauser Broad Institute of MIT and Harvard BioInfoSummer 2012 University of Adelaide December,

Slides:



Advertisements
Similar presentations
Tandem MS (MS/MS) on the Q-ToF2
Advertisements

Les détecteurs de masse : une révolution en chromatographie 1ère partie : Introduction à la spectrométrie de masse Pr. Jean-Louis Habib Jiwan UCL – Département.
In-depth Analysis of Protein Amino Acid Sequence and PTMs with High-resolution Mass Spectrometry Lian Yang 2 ; Baozhen Shan 1 ; Bin Ma 2 1 Bioinformatics.
Amino Acids, Peptides, Proteins Functions of proteins: Enzymes Transport and Storage Motion, muscle contraction Hormones Mechanical support Immune protection.
Proteomics Informatics – Protein identification III: de novo sequencing (Week 6)
De Novo Sequencing and Homology Searching with De Novo Sequence Tags.
How to identify peptides October 2013 Gustavo de Souza IMM, OUS.
De Novo Sequencing v.s. Database Search Bin Ma School of Computer Science University of Waterloo Ontario, Canada.
Protein Identification using Mass Spectrometry
Protein Sequencing and Identification by Mass Spectrometry.
Peptide Identification by Tandem Mass Spectrometry Behshad Behzadi April 2005.
Sangtae Kim Ph.D. candidate University of California, San Diego
ProReP - Protein Results Parser v3.0©
Basics of 2-DE and MALDI-ToF MS
Proteomics Informatics – Protein identification II: search engines and protein sequence databases (Week 5)
Proteomics Informatics Workshop Part I: Protein Identification
Previous Lecture: Regression and Correlation
De Novo Sequencing of MS Spectra
My contact details and information about submitting samples for MS
1 Deriving statistical models for predicting MS/MS product ion intensities Terry Speed & Frédéric Schütz Division of Genetics & Bioinformatics The Walter.
Goals in Proteomics 1.Identify and quantify proteins in complex mixtures/complexes 2.Identify global protein-protein interactions 3.Define protein localizations.
Proteomics Informatics – Overview of Mass spectrometry (Week 2)
<Instant Notes, D. Kealey & P.J. Haines>
Tryptic digestion Proteomics Workflow for Gel-based and LC-coupled Mass Spectrometry Protein or peptide pre-fractionation is a prerequisite for the reduction.
Peptide Sequencing by LC-MS/MS for Organisms with Unsequenced Genomes
Karl Clauser Proteomics and Biomarker Discovery Taming Errors for Peptides with Post-Translational Modifications Bioinformatics for MS Interest Group ASMS.
Fragmentation of Protonated Peptide Ions Group meeting Thursday, August 31, 2006.
Collision-based methods: Electron-based methods: Primary methods for dissociating peptides Collision-based methods: Ion trap collisional activation.
The dynamic nature of the proteome
PROTEIN STRUCTURE NAME: ANUSHA. INTRODUCTION Frederick Sanger was awarded his first Nobel Prize for determining the amino acid sequence of insulin, the.
Electronic Supplementary Material for the manuscript entitled: Effective selenium detoxification in the seed proteins of a hyperaccumulator plant: the.
Introduction to Protein Chemistry October 2013 Gustavo de Souza IMM, OUS.
UPDATE! In-Class Wed Oct 6 Latil de Ros, Derek Buns, John.
INF380 - Proteomics-91 INF380 – Proteomics Chapter 9 – Identification and characterization by MS/MS The MS/MS identification problem can be formulated.
Karl Clauser Proteomics and Biomarker Discovery 10/14/2015 9:47:49 AM 1 Manual De Novo Peptide MS/MS Interpretation For Evaluating Database Search Results.
Common parameters At the beginning one need to set up the parameters.
1 Chemical Analysis by Mass Spectrometry. 2 All chemical substances are combinations of atoms. Atoms of different elements have different masses (H =
Analysis of Complex Proteomic Datasets Using Scaffold Free Scaffold Viewer can be downloaded at:
A Comprehensive Comparison of the de novo Sequencing Accuracies of PEAKS, BioAnalyst and PLGS Bin Ma 1 ; Amanda Doherty-Kirby 1 ; Aaron Booy 2 ; Bob Olafson.
Legends For ETD data In the spectra  = precursor ions, charge-reduced ones too; * = charge-reduced ion from a coeluting precursor ion with different,
Protein and Peptide Sequencing by FTMS Susan Martin.
Laxman Yetukuri T : Modeling of Proteomics Data
ETD & ETD/PTR Electron Transfer Dissociation Proton Transfer Reaction
Finnish Custom Lab., Pekka Ravio
PEAKS: De Novo Sequencing using Tandem Mass Spectrometry Bin Ma Dept. of Computer Science University of Western Ontario.
Proteomics What is it? How is it done? Are there different kinds? Why would you want to do it (what can it tell you)?
Multiple flavors of mass analyzers Single MS (peptide fingerprinting): Identifies m/z of peptide only Peptide id’d by comparison to database, of predicted.
EBI is an Outstation of the European Molecular Biology Laboratory. In silico analysis of accurate proteomics, complemented by selective isolation of peptides.
Dual Picket Fence (K)L/D|I|L|D|Q|E|R(A)
De Novo Peptide Sequencing via Probabilistic Network Modeling PepNovo.
Lecture 3 Kumar Amino acids and AA Transport 1 Alpha carbon.
Constructing high resolution consensus spectra for a peptide library
DIA Method Design, Data Acquisition, and Assessment
김지형. Introduction precursor peptides are dynamically selected for fragmentation with exclusion to prevent repetitive acquisition of MS/MS spectra.
Quantitation using Pseudo-Isobaric Tags (QuPIT) and Quantitation using Pseudo-isobaric Amino acids in Cell culture (QuPAC) Parimal Samir Andrew J. Link.
RANIA MOHAMED EL-SHARKAWY Lecturer of clinical chemistry Medical Research Institute, Alexandria University MEDICAL RESEARCH INSTITUTE– ALEXANDRIA UNIVERSITY.
MS Libraries for Forensics: DART-MS and GC-MS
Identify proteins. Proteomic workflow Trypsin A typical sample We add a solution of 50 mM NH 4 HCO 3 (pH 7.8) containing trypsin ( µg/µl). Volume.
Proteomics 2010 蛋白質體學 Prelude- Amino acids 陳威戎
Mass Spectrometry 101 (continued) Hackert - CH 370 / 387D
Sample Preparation Enzymatic Digestion (Trypsin) + Fractionation.
A Database of Peak Annotations of Empirically Derived Mass Spectra
Karl R. Clauser Broad Institute of MIT and Harvard
Refining Peptide Fragmentation Models for Improved Confidence in Sequence/Spectrum Matching Karl Clauser Broad Institute of MIT and Harvard Cambridge,
Manual De Novo Peptide MS/MS Interpretation
Manual De Novo Peptide MS/MS Interpretation
Proteomics Informatics David Fenyő
Interpretation of Mass Spectra I
Proteomics Informatics –
Interpretation of Mass Spectra
Presentation transcript:

Sequence Information Content in Peptide MS/MS Spectra Karl R. Clauser Broad Institute of MIT and Harvard BioInfoSummer 2012 University of Adelaide December,

Topics Covered 2 AA properties Fragmentation pathways and ion types b/y pairs Non-mobile proton Neutral loss ion types CID/HCD/ETD Sample handling chemistry artifacts Isobaric co-eluters Mass tolerance units and isobaric AA’s Other Tutorials

AA Structures & Masses 3 G A V S T Y F W P 97 M C (+57 IAA) L I 113 D E pK: pK: C-term 3.5 K H R N Q pK: pK: N-term 7.5 NameAA Mass GlyG57 AlaA71 SerS87 ValV99 ThrT101 Leu/IleL/I113 AsnN114 AspD115 Lys/GlnK/Q128 GluE129 MetM131 HisH137 Phe/Met-oxF/m147 ArgR156 Cys-IAAC160 TyrY163 TrpW186

Charge-directed Fragmentation Scheme 4 H 2 N CH C NH CH C NH CH C NH CH C OH R1R1 R2R2 R3R3 R4R4 OOOO H b3b3 b ion formation NH CH C OH R4R4 O H + H y1y1 y ion formation + Neutral pumped away by vacuum system and/or H 2 N CH C NH CH C NH CH C R1R1 R2R2 OOO R3R3 zH z+ + + Neutral pumped away by vacuum system + Proton Mobility Mobile:z pre > #Arg + #Lys + #His Partially mobile:z pre #Arg Non-mobile:z pre < #Arg For peptides with non-mobile protons, fragmentation tends to proceed via charge-remote mechanisms. MS/MS spectra will be dominated by a few ions, typically: C-term side of D, E N-term side of P

Sequence Specific Fragment Ion Types 5 H 2 N CH C NH CH C NH CH C NH CH C OH R1R1 R2R2 R3R3 R4R4 OOOO y1y1 b3b3 nH n+ z1z1 x1x1 a3a3 c3c3 Ion type restrictionsresiduesdelta a-NH 3 contains NH 3 residueRK NQ-17 b-NH 3, y-NH 3 contains NH 3 residueRK NQ-17 b-H 2 O, y-H 2 Ocontains H 2 O residue ST DE-18 b-H 3 PO 4, y-H 3 PO 4 contains H 3 PO 4 residuest -98 y++, b++contains charged residues RHK

Immonium ions 6 H 2 N CH C NH CH C NH CH C NH CH C OH R1R1 R2R2 R3R3 R4R4 OOOO nH n+ Amino Acidm/z SSer60 VVal72 TThr74 I,LLeu,Ile86 NAsn87 DAsp88 K,QLys, Gln84,101,129 EGlu102 MMet104 HHis110 RArg70, 73, 87,100,112,185 FPhe120 PPro70, 126 CC-iodoacetamide133 YTyr136 WTrp117, 130, 159, 170 Provide partial AA composition, but not stoichiometry

Complementary Ions b/y pairs 7 E V Q L V|E/S|G|G|G L|V|K|P G G\S\L\R

Dual Picket Fence 8 A E/D|T|A|L|Y|Y|C A\K

Uniqueness of a Peptide Sequence 9 Clauser, K. R.; Baker, P. R.; Burlingame, A. L. " Role of Accurate Mass Measurement ( +/- 10ppm) in Protein Identification Strategies Employing MS or MS/MS and Database Searching", Anal. Chem. 1999, 71,

Dominant Cleavage Proline N-side 10 N F|P/S/P V D A A F R y9y9 b2b

Sparse Dominant Fragmentation (K)I S R|P G D|S D|D|S R(S) Non-mobile proton z pre < #Arg

12 Cry Babies (b-H 2 O & b pairs) P(m/z)-H 2 O P(m/z)-2H 2 O -18Da E/H/A|V/E|G/D|C D|F Q L L K N-term E

Orbitrap Elite, High Resolution MS/MS by CID, HCD, or ETD 13 Mass Analyzer for each Precursor Isolation for each Dissociation by CID or ETD Dissociation by HCD CID by resonant excitation <2eV HCD beam-type collisions with N 2 ~100eV ETD electron transfer dissociation CID /ETD 1/3 precursor m/z cut-off HCD, no cutoff for Separation in space of precursor isolation and fragmentation Fluoranthene for ETD

CID/HCD/ETD triplets on same precursor z=3 14 CID HCD ETD (K)K/I/S/N|I|R|E|M\L P V L|E|A V\A\K(A) (K)K|I/S N I R E M L|P|V|L\E|A V/A/K(A) (K)K/I/S/N I R E M L|P/V L\E|A\V\A\K(A)

CID/HCD/ETD triplets on same precursorz=2 15 (K)V S\I/P|V/I/S/D E/E/C Q/S/R(F) (K)V S/I/P/V|I|S/D E/E|C/Q S R(F) (K)V/S/I P/V/I/S/D E/E C/Q S\R(F) CID HCD ETD

CID/HCD/ETD triplets on same precursorz=4 16 (K)Q/R|V|T|G|L|D|F/I P\G|L\H P|I\L|S|L|S\K(M) (K)Q R V T G\L\D\F|I/P/G L/H/P I L/S L/S K(M) (K)Q R V T G L|D|F|I|P/G L H P I L S L S K(M) CID HCD ETD

ETD doesn’t work well at high m/z 17 (K)A G/K/P L L/I|I|A/E/D V E/G E A L A T L V V N T M R G I V K V A A V K A P G F G D R R K(A) (K)A G/K/P L/L|I|I|A/E/D V E G E A L A T L V V N T M R G I V K V A A V K A P G F G D/R R K(A) CID HCD ETD

Source of Incorrect MS/MS Interpretations 18 Major Database Peptide not in database. Mutation. MS/MS not from a peptide. Unanticipated Protein Chemistry Chemical modification, post-translational modification. Enzyme/Ion Source Non-specific cleavage. In-source fragmentation yields MS 3. Minor Algorithm Fragment ion types of instrument not accounted for. Peak Detection. Instrument Resolution Wrong parent charge. Wrong fragment charge. User Competence Wrong parameters selected.

Expect Woes & Nuisances 19 Sample Handling Chemistry Carbamylation+43nterm, Lysurea in digest buffer Deamidation +1 N -> Dsample in acid pyroGlutamic acid-17nterm Qsample in acid pyroCarbamidomethyl Cys-17nterm Csample in acid Oxidized Met+16Mgels Cys alkylation reagent +xn-term, W Data Dependent Acquisition Parameters Isobaric Co-eluters Protein Isoforms / Family Members Isobaric peptides from related proteins

20 (R)q L/Q|L|A|Q|E|A|A\Q\K(R) (R)Q L/Q/L/A|Q/E/A|A Q\K(R) P(m/z)-NH Da Q to q N-term Q Stinkers (b-NH 3 ) & Pyroglutamic Acid

21 G S/E S\G\I\F\T\N/T K Deamidation G S/E/S|G|I|F|T|D\T K % Da G S/E/S|G|I|F|T|n\T K % Da

Deamidation of Asn (+1Da) 22 ionsource.com Asn –NH + O = Asp

Know Your Chromatographic Peak Widths %  FwdRev: 3.49 (K)E E m E S A E G|L|K\G P/m\K(S) Top Database Search Result Merged 4 spectra same precursor 50 sec window different peptides

Physiochemical Complications to Computational Interpretation 24 Incomplete Fragmentation Inconsistent intensity of fragment ion types Instrument type dependent Amino acid dependent Chemical or post-translational modifications Isobaric AA’s I = L (C6 H11 N1 O) K = Q (C6 H12 N2 O, C5 H8 N2 O2) Isobaric AA combinations GG=N (C4 H6 N2 O2, C4 H6 N2 O2) GA=K=Q (C5 H8 N2 O2, C6 H12 N2 O, C5 H8 N2 O2) W=DA=VS (C11 H11 N2 O, C7 H10 N2 O4, C8 H14 N2 O3) Parent charge uncertainty Fragment charge uncertainty

25 Consequences of Inappropriate Tolerance Units (using Da tolerance when instrument errors are in ppm) Too loose Too tight just right Isobaric AA’s I = L (C6 H11 N1 O) = K ~ Q (C6 H12 N2 O, C5 H8 N2 O2) ~ D = F~m (C9 H9 N O, C5 H9 N O S) ~ D = Isobaric AA combinations GG=N (C4 H6 N2 O2, C4 H6 N2 O2) GA=Q~K (C5 H8 N2 O2, C5 H8 N2 O2, C6 H12 N2 O) ~ D = DA~W~VS (C7 H10 N2 O4, C11 H11 N2 O, C8 H14 N2 O3) ~ ~ D = D = Da mass error analyzers: ion trap, quadrupole ppm mass error analyzers: time-of-flight, orbitrap, ion cyclotron resonance

Additional Resources 26 Google: “de novo sequencing tutorial” Don Hunt and Jeff Shabanowitz - manual Rich Johnson - manual PEAKS - automated Bin Ma and Richard Johnson Tutorial article Ma B, Johnson R. “De Novo Sequencing and Homology Searching”. Mol Cell Proteomics 11: /mcp.O , 1–16, 2012.

Acknowledgements 27 Broad Institute Terri Addona Namrata Udeshi Philipp Mertins Steve Carr MIT Drew Lowery Majbrit Hjerrld Michael Yaffe University of California San Diego Adrian Guthals Nuno Bandeira University of Queensland David Morgenstern Eivind Undheim Glenn King