1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.

Slides:



Advertisements
Similar presentations
Laboratory Spectrum of the trans-gauche Conformer of Ethyl Formate Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski, Brooks H. Pate Department of Chemistry,
Advertisements

68th OSU International Symposium on Molecular Spectroscopy TH08
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Gas Analysis by Fourier Transform Millimeter Wave Spectroscopy Brent J. Harris, Amanda L. Steber, Kevin K. Lehmann, and Brooks H. Pate Department of Chemistry.
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
A Segmented Chirped-Pulse Fourier Transform Millimeter Wave Spectrometer ( GHz) with Real-time Signal Averaging Capability Brent J. Harris, Amanda.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Chirped-Pulse Fourier Transform mm-Wave Spectroscopy from GHz Brent J. Harris, Amanda L. Steber, Justin L. Neill *, Brooks H. Pate University of.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
R. D. Suenram, Justin Lindsay Neill, Jason J. Pajski, Gordon G. Brown, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Lena F. Elmuti, Daniel A. Obenchain, Don L. Jurkowski, Cori L. Christenholz, Amelia J. Sanders, Rebecca A. Peebles, Sean A. Peebles Department of Chemistry,
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Bri Gordon Steven T. Shipman New College of Florida
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Analysis of High Resolution Infrared Spectra of 1,1-Dichloroethylene in the 500 − 1000 cm −1 Range Rebecca A. Peebles, Sean A. Peebles Department of Chemistry.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
The microwave spectroscopy study of 1,2-dimethoxyethane
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Microwave spectra of 1- and 2-bromobutane
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
Fourier Transform Emission Spectroscopy of CoH and CoD
The Conformational Landscape of Serinol
Michal M. Serafin, Sean A. Peebles
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda L. Steber, Daniel A. Obenchain, Rebecca A. Peebles, and Sean A. Peebles Department of Chemistry, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department of Chemistry, University of Virginia, Charlottesville, VA Gamil A. Guirgis Gamil A. Guirgis Department of Chemistry and Biochemistry, The College of Charleston, Charleston, SC 29424

2 Introduction  Extend series of pentane analogs to include Diethylsilane (C 2 H 5 ) 2 SiH 2  Compare conformer stabilities, structural parameters  4 possible conformers  Gauche-Gauche  Trans-Gauche  Trans-Trans  Gauche-Gauche’

3 Ab Initio Structures Gauche-gauche Trans-gauche Gauche-gauche’ Trans-trans +4.6 kJ/mol +1.3 kJ/mol +1.2 kJ/mol 0 kJ/mol Gaussian 03: MP2/6-311+G(2df,2pd) level Relative energies are zero-point energy corrected

4 Experimental Technique Chirped-Pulse Fourier-Transform Microwave Spectrometer at the University of Virginia

5 Experimental Technique  Sample concentration: 0.2% diethylsilane  He/Ne carrier gas  1,000,810 acquisitions  10 FIDs per pulse  3 nozzles

6 Analysis Procedure  Import data into Origin  Using ab initio structure, isotopic rotational constants were used to predict experimental lines within a few MHz  SPFIT 1 and SPCAT 1 were used to predict and fit the experimental lines of the spectrum 1 Pickett, H. M. J. Mol. Spectrosc. 1991, 148, 371.

7 Broadband Spectrum TT TG GG

8 Magnified region of broadband spectrum from 9275 MHz to 9425 MHz containing 13 C lines for the trans- gauche conformer. The 1 11 ←0 00 rotational transitions for the four unique 13 C substitutions are highlighted.Spectrum

9 Internal Rotation Effects 2 11 ←2 02 Trans-trans conformer Low resolution 2 11 ← 2 02 transition High resolution 2 11 ← 2 02 transition  Splittings consistent with recent results for pentane 1 1 Churchill, G.B.; Bohn, R.K. J. Phys. Chem. A. 2007, 111, 3513

10 Ab Initio and Experimental Rotational Constants ParameterAb initio 28 Si 129 Si 30 Si 13 C-1 13 C-2 A (MHz) (23) (18) (18) (19) (19) B (MHz) (25) (13) (13) (14) (14) C (MHz) (24) (11) (11) (12) (12) ParameterAb initio 28 Si 129 Si 30 Si 13 C-1 13 C-2 13 C-3 13 C-4 A (MHz) (13) (19) (18) (20) (20) (25) (22) B (MHz) (5) (6) (7) (7) (7) (8) (11) C (MHz) (5) (5) (6) (6) (6) (8) (10) ParameterAb initio 28 Si 129 Si 30 Si 13 C-1 13 C-2 A (MHz) (10) (9) (9) (10) (10) B (MHz) (7) (9) (9) (10) (10) C (MHz) (6) (11) (11) (11) (12) Trans-gauche (C 1 ) conformer Trans-trans (C 2v ) conformer Gauche-gauche (C 2 ) conformer 1 Peebles, S. A.; Serafin, M. M.; Peebles, R. A.; Guirgis, G. A.; Stidham, H. D. J. Phys. Chem. A, 2009,113, 3137.

11 Structural Fit   Using Kraitchman’s equation: “r s structure” (for the heavy atom backbone)   KRA 1   EVAL 1   Using the STRFITQ 2 program: “r 0 structure”   H parameters fixed to ab initio values during fit 1 Kraitchman coordinates and propagated errors in parameters calculated using the KRA and EVAL code, Kisiel, Z. PROSPE–Programs for Rotational Spectroscopy; accessed July Schwendeman, R. H. In Critical Evaluation of Chemical and Physical Structural Information; Lide, D. R., Paul, M. A., Eds.; National Academy of Sciences: Washington, DC, The STRFITQ program used in this work is the University of Michigan modified version of Schwendeman's original code.

Parameter GG (MP2) GG (r s ) GG (r 0 ) TG (MP2) TG (r s )* TG (r 0 ) TT (MP2) TT (r s ) TT (r 0 ) GG' (MP2) C1-C21.528Å1.557(3)Å1.538(5)Å1.528Å1.538(5)Å1.544(13)Å1.528Å1.538(5)Å1.539(1)Å1.527Å C2-Si31.876Å1.852(1)Å1.877(2) Å1.875Å1.883(72)Å1.875(10)Å1.874Å1.870(3)Å1.878(4)Å1.877Å Si3-C Å1.852(104)Å1.878(4)Å Å C4-C Å1.532(5)Å1.541(2)Å Å C1-C2-Si3112.7°113.5(2)°113.3(5)°113.0°113.9(75)°112.9(2)°113.1°113.4(3)°113.2(8)°114.8° C2-Si3-C4110.3°110.9(10)°111.6(4)°111.7°112.1(58)°111.6(5)°112.5°111.9(2)°111.7(5)°112.6° Si3-C4-C °114.0(81)°113.4(5)° ° C1-C2-Si3- C °57.7 °57.5(2)°178.7°179.6 °180.6(13)°180.0° 82.0° C2-Si3-C4- C °60.9°61.9(19)° ° * Coordinates that are close to zero for the Si atom in this conformer lead to increased uncertainty in the determination of any structural parameters that involve the Si atom

13 Comparison  Group 4 Analogs  Pentane  Diethylsilane  Diethylgermane  Group 6 Analogs  Diethylether  Diethylsulfide

14 Pentane vs. Diethylsilane ParameterPentane DiEtSi (GG) r 0 DiEtSi (TG) r 0 DiEtSi (TT) r 0 C-C 1.531(2) Å 1.538(5) Å 1.544(13) / 1.541(2) Å 1.539(1) Å C-X-C112.9(2)°111.6(4)°111.6(5)°111.7(5)°  TT most stable for Pentane  GG most stable in Diethylsilane (DiEtSi)?  C-C bonds slightly larger for DiEtSi  C-X-C angle is slightly smaller for DiEtSi  Similar trend in Propane vs. Dimethylsilane 112.4(2)° ° 2 1 Lide, D.R. J. Chem. Phys. 1960, 33, Pierce, L. J. Chem. Phys. 1961, 34, 498.

Relative Abundances 15 Pentane % Abundances 1 Pentane % Abundances 2 DiEtSi % Abundances* GG TG TT Assume no relaxation of conformers in beam; T = 298 KAssume no relaxation of conformers in beam; T = 298 K From intensities of transitionsFrom intensities of transitions DiEtSi % Abundances Excluding Low VibrationsIncluding Low Vibrations GG7435 TG2563 TT Calculated from ab initio valuesCalculated from ab initio values *Calculated from: 1 Bonham, R.A.; Bartell, L.S.; Kohl, D.A. J. Am. Chem. Soc., 1959, 81, Churchill, G.B.; Bohn, R.K. J. Phys. Chem. A. 2007, 111, 3513 Experiment: Medvedev, I., et al J. Mol. Spectrosc. 2004, 228, 314. Townes, C. H.; Schawlow, A. L. Microwave Spectroscopy, Dover Publications Inc., New York, Ab initio: Salam, A.; Deleuze, M. S. J. Chem. Phys. 2002, 116, Churchill, G. B.; Milot, R. L.; Bohn, R. K. J. Mol. Struct. 2007, 837, 86.

Diethylgermane Parameter Ab initio for 74 Ge 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge A (MHz) (27) (27) (6) (16) (45) B (MHz) (12) (11) (8) (8) (19) C (MHz) (9) (8) (6) (7) (12)  GG conformer assigned  73 Ge coupling constants (MHz):  aa = (121),  bb = (47),  cc = (168)  Recent broadband scan should facilitate identification of additional conformers

17 DiEtS and DiEtE vs. DiEtSi Diethylsulfide ParameterGGTGTT ΔE (kJ/mol) HF/6-31G* ΔE (kJ/mol) MP2/6-311G** Diethylsilane ParameterGGTGTT ΔE (kJ/mol) MP2/6-311+G(2df,2pd) Diethylether ParameterGGTGTT ΔE (kJ/mol) HF/4-21G ΔE (kJ/mol) MP2/6-31G** Kuze, N. et al. J. Mol. Struct. 1993, 301, Medvedev, I. et al. J. Mol. Spectrosc. 2004, 228, Plusquellic, D.F. et al. J. Chem. Phys. 2001, 115, 3057

Conclusions  GG or TG is most stable and abundant conformer?  Conformational stabilities are particularly sensitive to level of calculation  GG’ consistently not seen in any diethyl compound 18

Future Work  Further comparison of Diethylsilane with other similar compounds  Diethyldifluorosilane 1  3,3-Difluoropentane  Finish assignment of Diethylgermane  Compare to DiEtSi to determine systematic changes due to substitution 19 1 Peebles, S. A.; Serafin, M. M.; Peebles, R. A.; Guirgis, G. A.; Stidham, H. D. J. Phys. Chem. A, 2009,113, ,3-difluoropentane (0.1% in He/Ne) Center frequency = MHz Chirp = MHz 150 gas pulses Trans-gauche conformer

Future Work  Further comparison of Diethylsilane with other similar compounds  Diethyldifluorosilane 1  3,3-Difluoropentane  Finish assignment of Diethylgermane  Compare to DiEtSi to determine systematic changes due to substitution 20 1 Peebles, S. A.; Serafin, M. M.; Peebles, R. A.; Guirgis, G. A.; Stidham, H. D. J. Phys. Chem. A, 2009,113, 3137.

21 Acknowledgements  NSF  Professor Robert Bohn  The Peebles’s groups

To calculate populations:To calculate populations: I = intensity; N = concentration;  = absorption coefficient From Townes and Schawlow:From Townes and Schawlow: f v = fraction of molecules in ground vibrational state = W v = MP2 vibrational energy (used MP2 zero point vibrational energy)  n = vibrational frequency (product only over  < 1000 cm -1 ) d n = degeneracy of the n th vibrational mode W JKaKc = energy of lower rotational level |  ij | 2 =  b 2 x line strength (S) (used only b-types, S equal for trans. compared) = rotational transition frequency = rotational transition frequency  = line width at half maximum To calculate percentages (assume gg’ negligible):To calculate percentages (assume gg’ negligible):